Cracking the coding interview--Q20.12

本文探讨了给定NxN矩阵中寻找最大和子矩阵的有效算法,包括暴力法、部分和预处理及降维方法,并提供了O(n^3)时间复杂度的解决方案。

题目

原文:

Given an NxN matrix of positive and negative integers, write code to find the submatrix with the largest possible sum.

译文:

给一个NxN的整数(每个格是正数、负数或零)矩阵,写代码找出具有最大和的子矩阵。

解答

分析如下(转自:hawstein

暴力法,时间复杂度O(n6 )

最简单粗暴的方法就是枚举所有的子矩阵,求和,然后找出最大值。 枚举子矩阵一共有C(n, 2)*C(n, 2)个(水平方向选两条边,垂直方向选两条边), 时间复杂度O(n4 ),求子矩阵中元素的和需要O(n2 )的时间。 因此总的时间复杂度为O(n6 )。

部分和预处理,时间复杂度降到O(n4 )

上面的方法需要O(n2 )去计算子矩阵中元素的和。 这一部分我们可以在预处理的时候求出部分和,在使用的时候就只需要O(1) 的时间来得到子矩阵中元素的和。

我们用一个二维数组p来保存矩阵的部分和,p[i][j]表示左上角是(1, 1),(下标从1开始), 右下角是(i, j)的矩阵中元素的和。这样一来,如果我们要求矩阵(x1, x2, y1, y2) 中元素的和(即上图矩阵D),我们可以通过以下式子计算得出:

sum(D) = p[y2][x2] - p[y2][x1-1] - p[y1-1][x2] + p[y1-1][x1-1]

只需要O(1)的时间。

部分和p[i][j]要怎么计算呢?我们可以通过更小的部分和来计算得到它:

p[i][j] = p[i-1][j] + p[i][j-1] - p[i-1][j-1] + A[i][j]

其中A[i][j]是格子(i, j)中的整数。我们只需要O(n2 ) 的时间即可预处理得到所有的部分和。

降维,O(n3 )的解法

如果有一个一维的数组,我们要求它子数组之和的最大值,最好的时间复杂度是O(n)。 既然如此,我们可以把二维数组一个方向的数累加起来,将它变为一维数组, 然后就转化成了求一维数组子数组之和的最大值。看示意图:

            第k列 第l列
第i行:...   ...     ...     ...
      ...   ...     ...     ...
第j行:...   ...     ...     ...

在同一列中,我们把第i行到第j行的数加起来,得到如下:

                第k列 第l列
只剩下一行:...   ...     ...     ...

这时候我们可以用O(n)的时候算出子数组之和的最大值,假设是第k个元素到第l 个元素的子数组。那么它实际上就对应二维数组中第i,j行,第k,l 列组成的子矩阵的元素和。

枚举i,j行需要O(n2 )的时间,求一维情况的子数组最大和需要O(n)的时间, 所以总的时间复杂度为O(n3 )。其中求第k列元素中, 第i行到第j行的元素和可以用部分和求解,仅需要O(1)的时间:

sum(i,j,k) = p[j][k] - p[j][k-1] - p[i-1][k] + p[i-1][k-1]
代码如下:(ctci)

public static int getMaxMatrix(int[][] original) {
	int maxArea = Integer.MIN_VALUE; // Important! Max could be < 0
	int rowCount = original.length;
	int columnCount = original[0].length;
	int[][] matrix = precomputeMatrix(original);
	for (int row1 = 0; row1 < rowCount; row1++) {
		for (int row2 = row1; row2 < rowCount; row2++) {
			for (int col1 = 0; col1 < columnCount; col1++) {
				for (int col2 = col1; col2 < columnCount; col2++) {
					maxArea = Math.max(maxArea, computeSum(matrix,row1, row2, col1, col2));
				}
			}
		}
	}
	return maxArea;
}
private static int[][] precomputeMatrix(int[][] matrix) {
	int[][] sumMatrix = new int[matrix.length][matrix[0].length];
	for (int i = 0; i < matrix.length; i++) {
		for (int j = 0; j < matrix.length; j++) {
			if (i == 0 && j == 0) { // first cell
				sumMatrix[i][j] = matrix[i][j];
			} else if (j == 0) { // cell in first column
				sumMatrix[i][j] = sumMatrix[i - 1][j] + matrix[i][j];
			} else if (i == 0) { // cell in first row
				sumMatrix[i][j] = sumMatrix[i][j - 1] + matrix[i][j];
			} else {
				sumMatrix[i][j] = sumMatrix[i - 1][j] +
				sumMatrix[i][j - 1] - sumMatrix[i - 1][j - 1] + matrix[i][j];
			}
		}
	}
	return sumMatrix;
}

private static int computeSum(int[][] sumMatrix, int i1, int i2, int j1, int j2) {
 	if (i1 == 0 && j1 == 0) { // starts at row 0, column 0
		return sumMatrix[i2][j2];
	} else if (i1 == 0) { // start at row 0
		return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1];
	} else if (j1 == 0) { // start at column 0
		return sumMatrix[i2][j2] - sumMatrix[i1 - 1][j2];
	} else {
		return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1] - sumMatrix[i1 - 1][j2] + sumMatrix[i1 - 1][j1 - 1];
	}
}

---EOF---

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值