分支限界---->15-谜问题

本文探讨了15-谜问题的基本概念与解决方法。详细介绍了如何通过合法移动将初始排列转换为目标排列,并给出了判断目标状态可达性的条件及成本估计函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

15-谜问题

一、问题描述

在一个分成16格的方形棋盘上放有15块编了号的牌。对于这些牌给定的一种初始排列,要求通过一系列的合法移动将初始排列转换成目标排列。

合法移动:每次将一个邻接于空格的牌移动到空格位置

(注:并不是所有的初始状态都能变换成目标状态的)

二、如何判定目标状态在初始状态的状态空间中?

1.记POSITION(i)为编号为i的牌在初始状态中的位置;POSITION(16)表示空格的位置。

POSITION(1:16)=(1,5,2,3,7,10,9,13,14,15,11,8,16,12,4,6)

2.记LESS(i)是这样牌j的数目:j<i,但POSITION(j)> POSITION(i),即编号小于i但初始位置在i之后的牌的数目。

   例:LESS(1)=0; LESS(4)=1; LESS(12)=6

3.引入一个量X

如图所示,初始状态时,若空格落在橙色方格上,则X=1:若空格落在白色方格上,则X=0。

4.目标状态是否在初始状态的状态空间中的判别条件:

当且仅当 是偶数时,目标状态可由此初始状态到达。

三、成本估计函数

(X)是由根到结点X的路径长度

 是以X为根的子树中由X到目标状态的一条最短路径长度的估计值——至少应是能把状态X转换成目标状态所需的最小移动数。故,令

               =不在其目标位置的非空白牌数目

四、例子

"迷失的魔杖"是一个经典的益智解游戏,通常涉及到路径寻找和决策树的问题,可以很好地结合多种算法思想。以下是一个简化的示例,展示如何使用C++实现,这里我们会结合搜索算法: 首先,确定基础数据结构和功能模块: 1. **网格结构** - 使用二维数组表示地图,每个元素代表地面、障碍物或其他特殊地点(如目标位置)。 2. **状态表示** - 定义节点类,包含当前位置、走过的步骤等信息。 3. **搜索算法** - 可能需要实现深度优先搜索(DFS)、广度优先搜索(BFS)、A*搜索(启发式搜索)或分支限界法(如IDA*),用于查找从起点到终点的最短路径。 分治法在这里不太适用,因为游戏一般不需要递归分割问题;贪心法则可用于优化路径,比如A*算法选择下一个节点时,总是选取当前看来离目标最近的那个。 回溯法可以用在解决一些限制条件下的路径问题,如果存在多个可能路径,通过尝试然后回溯来找到最优解。 随机算法可能用于生成随机地图布局,或者作为启发式函数的一部分,增加游戏的随机性和挑战性。 以下是简单的代码片段(简化版): ```cpp #include <iostream> #include <queue> class Node { public: int x, y; // 添加其他属性... }; bool isGoal(Node &node, const std::vector<std::vector<char>>& grid) { // 检查是否到达目标位置 } void search(Node &start, Node &goal, std::vector<Node>& path, std::vector<std::vector<char>>& grid) { // 根据选择的算法填写这部分代码 } int main() { // 初始化游戏地图... Node start, goal; // 设定初始和目标位置 search(start, goal, path, grid); if (path.empty()) { std::cout << "无法到达目标\n"; } else { std::cout << "找到了路径:" << std::endl; for (const auto& node : path) { std::cout << "(" << node.x << ", " << node.y << ") "; } std::cout << "\n"; } return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值