POJ 2374 Fence Obstacle Course 线段树优化DP

原创 2016年08月29日 09:54:24

时空隧道


题目大意:
给出一些篱笆,编号为1~n,1号篱笆在最下面,n号篱笆在最上面,给出起点s的坐标,要求牛从起点出发,到达到达n号篱笆下面的地上的0点,求出最小横向路径


分析:
dp方程比较好想,大概就是没一个篱笆可以更新它下面的最近的一个可以直达的篱笆,还是看代码吧:

    f[1][0]=labs(s-a[1]),f[1][1]=labs(b[1]-s);
    for(int i=1;i<n;i++){
        for(int j=i+1;j<=n;j++)
            if(a[i]>=a[j]&&a[i]<=b[j]){
                f[j][0]=min(f[j][0],f[i][0]+labs(a[j]-a[i]));
                f[j][1]=min(f[j][1],f[i][0]+labs(a[i]-b[j]));
                break;
            }
        for(int j=i+1;j<=n;j++)
            if(b[i]>=a[j]&&b[i]<=b[j]){
                f[j][0]=min(f[j][0],f[i][1]+labs(b[i]-a[j]));
                f[j][1]=min(f[j][1],f[i][1]+labs(b[j]-b[i]));
                break;
            }
    }

然后我们发现这是O(n^2)的转移,n<=5W,挂了
然后我们发现,对于每个i所对应的j可以用线段树来维护,大概可以简化为区间覆盖问题:倒着插入区间,更新区间id,查询每个篱笆的左右端点被哪个id覆盖


代码如下:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define ZERO 100005
#define int long long
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=50000+5,maxm=200000+5;
int n,s,a[maxn],b[maxn],f[maxn][2],MAX,MIN;
struct Tree{
    int l,r,id;
}tree[maxm*4]; 
struct M{
    int A,B;
}S[maxn];
inline void build(int l,int r,int tr){
    tree[tr].l=l,tree[tr].r=r,tree[tr].id=0;
    if(l==r)
        return;
    int mid=(l+r)>>1;
    build(l,mid,tr<<1),build(mid+1,r,tr<<1|1);
} 
inline void change(int l,int r,int id,int tr){
    if(tree[tr].l==l&&tree[tr].r==r){
        tree[tr].id=id;
        return; 
    }
    int mid=(tree[tr].l+tree[tr].r)>>1;
    if(tree[tr].id!=-1){
        tree[tr<<1].id=tree[tr].id;
        tree[tr<<1|1].id=tree[tr].id;
    }
    if(r<=mid)
        change(l,r,id,tr<<1);
    else if(l>mid)
        change(l,r,id,tr<<1|1);
    else 
        change(l,mid,id,tr<<1),change(mid+1,r,id,tr<<1|1);
    if(tree[tr<<1].id!=tree[tr<<1|1].id||tree[tr<<1].id==-1||tree[tr<<1|1].id==-1)
        tree[tr].id=-1;
}
inline int query(int pos,int tr){
    if(tree[tr].l==tree[tr].r||(tree[tr].l<=pos&&tree[tr].r>=pos&&tree[tr].id!=-1))
        return tree[tr].id;
    int mid=(tree[tr].l+tree[tr].r)>>1;
    if(tree[tr].id!=-1){
        tree[tr<<1].id=tree[tr].id;
        tree[tr<<1|1].id=tree[tr].id;
    }
    if(pos>mid)
        return query(pos,tr<<1|1);
    else
        return query(pos,tr<<1);
}
signed main(void){
    scanf("%lld%lld",&n,&s),MAX=-inf,MIN=inf;
    memset(f,inf,sizeof(f));
    for(int i=n;i>=1;i--)
        scanf("%lld%lld",&a[i],&b[i]),MAX=max(MAX,b[i]),MIN=min(a[i],MIN);
    f[1][0]=labs(s-a[1]),f[1][1]=labs(b[1]-s);
    build(ZERO+MIN,MAX+ZERO,1);
    for(int i=n;i>=1;i--)
        S[i].A=query(a[i]+ZERO,1),S[i].B=query(b[i]+ZERO,1),change(a[i]+ZERO,b[i]+ZERO,i,1);
    for(int i=1;i<n;i++){
        int j=S[i].A;
        if(j!=0)
            f[j][0]=min(f[j][0],f[i][0]+labs(a[j]-a[i])),f[j][1]=min(f[j][1],f[i][0]+labs(a[i]-b[j]));
        j=S[i].B;
        if(j!=0)
            f[j][0]=min(f[j][0],f[i][1]+labs(b[i]-a[j])),f[j][1]=min(f[j][1],f[i][1]+labs(b[j]-b[i]));
    }
    int ans=min(f[n][0]+labs(a[n]),f[n][1]+labs(b[n]));
    for(int i=1;i<n;i++){
        if(S[i].A==0)
            ans=min(f[i][0]+labs(a[i]),ans);
        if(S[i].B==0)
            ans=min(ans,f[i][1]+labs(b[i]));
    }
    cout<<ans<<endl;
    return 0;
}

by >_< neighthorn

版权声明:转载请注明出处---by 小雪刺

相关文章推荐

BZOJ3387 [USACO2004 Dec] Fence Obstacle Course栅栏行动

[Solution] Simply modify some important positions by
  • laekov
  • laekov
  • 2014年08月17日 12:52
  • 756

BZOJ3387: [Usaco2004 Dec]Fence Obstacle Course栅栏行动

题目大意:给定一个初始点和n个与x轴平行的y轴坐标互不相同的栅栏,问水平距离至少移动多少能使得从该初始点回到原点且不从中间跨越任何一条栅栏 首先可以确定,最终行进的路线一定可以等价于在几个栅...
  • commonc
  • commonc
  • 2016年08月22日 08:30
  • 389

POJ 2374/bzoj 3387: [Usaco2004 Dec]Fence Obstacle Course栅栏行动

一个因为看错而产生的忧伤的故事

poj2374 Fence Obstacle Course

/* * poj2374 AC * 线段树+DP 这道题还是很典型的,值得一做。 * * */ #include #include #define MAXN 200005 using na...

POJ 2374 Fence Obstacle Course

Description Farmer John has constructed an obstacle course for the cows' enjoyment. The course ...

BZOJ3387 [Usaco2004 Dec]Fence Obstacle Course栅栏行动

按纵坐标从小到大顺序加入每个栅栏,用线段树维护从每个横坐标,纵坐标正无穷处走到0,0的答案,加入一个栅栏,一定是这段区间左边一段往左走,右边一段往右走,分界点可以算出来,两边都分别相当于给答案进行区间...

poj2374 Fence Obstacle Course

/* * poj2374 AC * 线段树+DP 这道题还是很典型的,值得一做。 * * */ #include #include #define MAXN 200005 using na...

纪念博客诞生

今天是博客诞生的日子,走过了19个春秋,离着生活的本质越来越近,真的是成长了不少,然而越是这样就越感到世界的不可思议,知识的永无止境,活到老,学到老,这句话真的是说出了人活着的要素。而现在我还年轻的很...

[线段树]POJ 2374 Fence Obstacle Course

这道题目先抛开时间效率来分析。 我们可以开一个一维数组w[],数组下标就是区间的端点值,cow刚开始在w[s]处。碰到一个区间后,我们看这个区间会覆盖多少个值(实际就是到前面区间的端点所花的步数),...

POJ2374 Fence Obstacle Course——线段树+动态规划

初次看到这道题,明显的动态规划。但是,朴素的转移方程的时间复杂度是O(n^2)的,对于n 注意到这题有个隐含的条件:从每个栅栏往下走只能走到最多两个固定的栅栏上面:即向左拐、向右拐只能到确定的栅栏上...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 2374 Fence Obstacle Course 线段树优化DP
举报原因:
原因补充:

(最多只允许输入30个字)