关闭

POJ 2374 Fence Obstacle Course 线段树优化DP

455人阅读 评论(3) 收藏 举报
分类:

时空隧道


题目大意:
给出一些篱笆,编号为1~n,1号篱笆在最下面,n号篱笆在最上面,给出起点s的坐标,要求牛从起点出发,到达到达n号篱笆下面的地上的0点,求出最小横向路径


分析:
dp方程比较好想,大概就是没一个篱笆可以更新它下面的最近的一个可以直达的篱笆,还是看代码吧:

    f[1][0]=labs(s-a[1]),f[1][1]=labs(b[1]-s);
    for(int i=1;i<n;i++){
        for(int j=i+1;j<=n;j++)
            if(a[i]>=a[j]&&a[i]<=b[j]){
                f[j][0]=min(f[j][0],f[i][0]+labs(a[j]-a[i]));
                f[j][1]=min(f[j][1],f[i][0]+labs(a[i]-b[j]));
                break;
            }
        for(int j=i+1;j<=n;j++)
            if(b[i]>=a[j]&&b[i]<=b[j]){
                f[j][0]=min(f[j][0],f[i][1]+labs(b[i]-a[j]));
                f[j][1]=min(f[j][1],f[i][1]+labs(b[j]-b[i]));
                break;
            }
    }

然后我们发现这是O(n^2)的转移,n<=5W,挂了
然后我们发现,对于每个i所对应的j可以用线段树来维护,大概可以简化为区间覆盖问题:倒着插入区间,更新区间id,查询每个篱笆的左右端点被哪个id覆盖


代码如下:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define ZERO 100005
#define int long long
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=50000+5,maxm=200000+5;
int n,s,a[maxn],b[maxn],f[maxn][2],MAX,MIN;
struct Tree{
    int l,r,id;
}tree[maxm*4]; 
struct M{
    int A,B;
}S[maxn];
inline void build(int l,int r,int tr){
    tree[tr].l=l,tree[tr].r=r,tree[tr].id=0;
    if(l==r)
        return;
    int mid=(l+r)>>1;
    build(l,mid,tr<<1),build(mid+1,r,tr<<1|1);
} 
inline void change(int l,int r,int id,int tr){
    if(tree[tr].l==l&&tree[tr].r==r){
        tree[tr].id=id;
        return; 
    }
    int mid=(tree[tr].l+tree[tr].r)>>1;
    if(tree[tr].id!=-1){
        tree[tr<<1].id=tree[tr].id;
        tree[tr<<1|1].id=tree[tr].id;
    }
    if(r<=mid)
        change(l,r,id,tr<<1);
    else if(l>mid)
        change(l,r,id,tr<<1|1);
    else 
        change(l,mid,id,tr<<1),change(mid+1,r,id,tr<<1|1);
    if(tree[tr<<1].id!=tree[tr<<1|1].id||tree[tr<<1].id==-1||tree[tr<<1|1].id==-1)
        tree[tr].id=-1;
}
inline int query(int pos,int tr){
    if(tree[tr].l==tree[tr].r||(tree[tr].l<=pos&&tree[tr].r>=pos&&tree[tr].id!=-1))
        return tree[tr].id;
    int mid=(tree[tr].l+tree[tr].r)>>1;
    if(tree[tr].id!=-1){
        tree[tr<<1].id=tree[tr].id;
        tree[tr<<1|1].id=tree[tr].id;
    }
    if(pos>mid)
        return query(pos,tr<<1|1);
    else
        return query(pos,tr<<1);
}
signed main(void){
    scanf("%lld%lld",&n,&s),MAX=-inf,MIN=inf;
    memset(f,inf,sizeof(f));
    for(int i=n;i>=1;i--)
        scanf("%lld%lld",&a[i],&b[i]),MAX=max(MAX,b[i]),MIN=min(a[i],MIN);
    f[1][0]=labs(s-a[1]),f[1][1]=labs(b[1]-s);
    build(ZERO+MIN,MAX+ZERO,1);
    for(int i=n;i>=1;i--)
        S[i].A=query(a[i]+ZERO,1),S[i].B=query(b[i]+ZERO,1),change(a[i]+ZERO,b[i]+ZERO,i,1);
    for(int i=1;i<n;i++){
        int j=S[i].A;
        if(j!=0)
            f[j][0]=min(f[j][0],f[i][0]+labs(a[j]-a[i])),f[j][1]=min(f[j][1],f[i][0]+labs(a[i]-b[j]));
        j=S[i].B;
        if(j!=0)
            f[j][0]=min(f[j][0],f[i][1]+labs(b[i]-a[j])),f[j][1]=min(f[j][1],f[i][1]+labs(b[j]-b[i]));
    }
    int ans=min(f[n][0]+labs(a[n]),f[n][1]+labs(b[n]));
    for(int i=1;i<n;i++){
        if(S[i].A==0)
            ans=min(f[i][0]+labs(a[i]),ans);
        if(S[i].B==0)
            ans=min(ans,f[i][1]+labs(b[i]));
    }
    cout<<ans<<endl;
    return 0;
}

by >_< neighthorn

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:41801次
    • 积分:2189
    • 等级:
    • 排名:第17911名
    • 原创:170篇
    • 转载:5篇
    • 译文:0篇
    • 评论:32条
    博客专栏
    文章分类
    最新评论