BP网络练习

原创 2012年03月21日 23:55:34

利用BP算法及Sigmoid函数,研究函数的逼近问题:

f(x)=1/x,  1<=x<=100;

BP神经网络:

clc;close all;clear;
N = 7;
P = rand(1,N);
P = P*100
T = P.^(-1)
w1 = rand(1,2);
w2 = rand(2,1);
E = 0;
Eta = 0.5;
epoch = 0;
while (epoch==0||0.5*(1/N)*E>0.00001)  
    E = 0;
    for n=1:N
            v1 = (w1')*P(n);                 
            y1 = (exp(-1*v1)+1).^(-1);
            v2 = (w2')*y1;
            O = (exp(-1*v2)+1).^(-1);
            e=T(n)-O;
            E=E+0.5*(e.^2);
            Delta2 = e*O*(1-O);
            w2 = w2+Eta*Delta2*y1;
            Delta1(1,1) = y1(1,1)*(1-y1(1,1))*([1 1]*(Delta2*w2));
            Delta1(2,1) = y1(2,1)*(1-y1(2,1))*([1 1]*(Delta2*w2));
            w1(1,1) = w1(1,1)+Eta*Delta1(1,1)*P(n);
            w1(1,2) = w1(1,2)+Eta*Delta1(2,1)*P(n);
            epoch = epoch+1;
    end
end
e
E
epoch
w1
w2

仿真:

function bpsim(w1,w2)
P = 0:1:100;
T = P.^(-1);
v1 = (w1')*P;                 
y1 = (exp(-1*v1)+1).^(-1);
v2 = (w2')*y1;
O = (exp(-1*v2)+1).^(-1);
hold;
plot(P,T,'r');
plot(P,O,'b');

仿真结果:

P =

   33.1665   15.2234   34.8008   12.1658   88.4153    9.4278   93.0041

T =

    0.0302    0.0657    0.0287    0.0822    0.0113    0.1061    0.0108

e =

   -0.0080

E =

  1.4000e-004

epoch =

      958895

w1 =

    0.0456   -0.3060

w2 =

   -4.0149
    3.8677


BP神经网络

今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据 挖掘等领域。接下来介绍BP神经网络的原理及实现。   Contents     1. BP神经网络...

BP网络练习(二)

上次用MATLAB做的,这次尝试用C写了下,有待改进! #include #include double daoshu(double p)//求导数函数 { double d; d = 1/...

神经网络BP网络的练习参考

  • 2010年09月13日 20:56
  • 61KB
  • 下载

十一行Python代码实现一个误差逆传播(BP)神经网络

十一行Python代码实现一个误差逆传播(BP)神经网络标签(空格分隔): BP 神经网络 机器学习 通过一个例子,来学习BP神经网络。这个例子来源于十一行Python代码实现一个神经网络(第一部...

BP神经网络的预测Matlab程序

  • 2017年11月14日 21:32
  • 49KB
  • 下载

BP神经网络原理与应用-基于电影评分预测案例

BP神经网络背景BP神经网络(Back Propagation Neutral Network)是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多...

BP 神经网络 预测汽油中的成分

  • 2017年12月04日 11:42
  • 1KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BP网络练习
举报原因:
原因补充:

(最多只允许输入30个字)