BP网络练习

原创 2012年03月21日 23:55:34

利用BP算法及Sigmoid函数,研究函数的逼近问题:

f(x)=1/x,  1<=x<=100;

BP神经网络:

clc;close all;clear;
N = 7;
P = rand(1,N);
P = P*100
T = P.^(-1)
w1 = rand(1,2);
w2 = rand(2,1);
E = 0;
Eta = 0.5;
epoch = 0;
while (epoch==0||0.5*(1/N)*E>0.00001)  
    E = 0;
    for n=1:N
            v1 = (w1')*P(n);                 
            y1 = (exp(-1*v1)+1).^(-1);
            v2 = (w2')*y1;
            O = (exp(-1*v2)+1).^(-1);
            e=T(n)-O;
            E=E+0.5*(e.^2);
            Delta2 = e*O*(1-O);
            w2 = w2+Eta*Delta2*y1;
            Delta1(1,1) = y1(1,1)*(1-y1(1,1))*([1 1]*(Delta2*w2));
            Delta1(2,1) = y1(2,1)*(1-y1(2,1))*([1 1]*(Delta2*w2));
            w1(1,1) = w1(1,1)+Eta*Delta1(1,1)*P(n);
            w1(1,2) = w1(1,2)+Eta*Delta1(2,1)*P(n);
            epoch = epoch+1;
    end
end
e
E
epoch
w1
w2

仿真:

function bpsim(w1,w2)
P = 0:1:100;
T = P.^(-1);
v1 = (w1')*P;                 
y1 = (exp(-1*v1)+1).^(-1);
v2 = (w2')*y1;
O = (exp(-1*v2)+1).^(-1);
hold;
plot(P,T,'r');
plot(P,O,'b');

仿真结果:

P =

   33.1665   15.2234   34.8008   12.1658   88.4153    9.4278   93.0041

T =

    0.0302    0.0657    0.0287    0.0822    0.0113    0.1061    0.0108

e =

   -0.0080

E =

  1.4000e-004

epoch =

      958895

w1 =

    0.0456   -0.3060

w2 =

   -4.0149
    3.8677


BP网络练习

利用BP算法及Sigmoid函数,研究函数的逼近问题: f(x)=1/x,  1 BP神经网络: clc;close all;clear; N = 7; P = rand(1,N); P =...
  • nevermoredanny
  • nevermoredanny
  • 2012年03月21日 23:55
  • 1700

模式识别(Pattern Recognition)学习笔记(二十)--BP算法

1.引言 在无法像线性感知器一样利用梯度下降学习参数这一问题阻碍了MLP长达25年后的一天,有人给出了一种有效的求解这些参数的方法,就是大名鼎鼎的反向传播算法(Back Propagation),简称...
  • eternity1118_
  • eternity1118_
  • 2016年06月12日 12:31
  • 3327

BP算法及例子

用如下图1的神经网络结构(正向神经网络结构为2-4-4-2-1 )去逼近函数: f(x1,x2) = (x1-1)^4 + 2×x2^2。 1)网络各神经元的激发函数为:s函数——F(x)...
  • wanglp094
  • wanglp094
  • 2012年07月01日 00:00
  • 4317

BP网络练习(二)

上次用MATLAB做的,这次尝试用C写了下,有待改进! #include #include double daoshu(double p)//求导数函数 { double d; d = 1/...
  • nevermoredanny
  • nevermoredanny
  • 2012年03月25日 23:07
  • 749

BP+SGD+激活函数+代价函数+基本问题处理思路

1. Sigmoid激活函数和交叉商代价函数 2. Softmax激活函数和对数似然成本函数 3. tanh激活函数...
  • MyArrow
  • MyArrow
  • 2016年05月13日 16:49
  • 4722

BP算法理解

原文标题:【转】脉络清晰的BP神经网络讲解,赞 原文链接:http://www.cnblogs.com/wengzilin/archive/2013/04/24/3041019.html ...
  • ngmanhei
  • ngmanhei
  • 2015年05月13日 16:37
  • 1079

deep learning 深度网络和BP反馈

Abstract:近两年,DeepLearning(DL)Deep\,Learning(DL)在国内逐渐活跃起来。DeepLearningDeep\,Learning主要应用于图像识别,目标检测等图像...
  • hlx371240
  • hlx371240
  • 2015年03月26日 17:16
  • 2003

通俗的例子去理解BP网络

最近因为论文需要,研究了下神经网络,重点看了BP网络。 学习过程中,我不得不感叹造物主的神奇和人类智慧的魅力,同时我也产生了一些想法想写出来跟大家交流。 大家在刚开始学习神经网络的时候可能会比较难...
  • u014557232
  • u014557232
  • 2015年12月20日 17:59
  • 760

BP算法

BP算法小问答 Q:BP算法是什么? A:对于机器学习,基本上任何算法最后都会通过SGD(随机梯度下降)来修正权重,而对于深度学习,其修正权重的方法就是BP算法。   Q:它怎么修正权重? A:神经...
  • xueyingxue001
  • xueyingxue001
  • 2016年10月21日 15:25
  • 1897

BP算法详谈

反向传播BP模型 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算 法相应的。所以,有时人们并不...
  • u011584941
  • u011584941
  • 2015年07月07日 16:05
  • 6842
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BP网络练习
举报原因:
原因补充:

(最多只允许输入30个字)