卫条件

卫条件,核心思想就是只找反例,return出去 下面我们通过一个小题目来演示:


这里如果我们用传统的if来判断,那么绕的太多了,所以我们只需将每一个条件不满足的return false 就行了。

具体实现代码如下:

package cn.hncu.part1;

/*
 *1)A,B两人至少有1人参加会议;
 2)A,E,F 3人中有2人参加会议;
 3)B和C两人一致决定,要么两人都去,要么两人都不去;
 4)A,D两人中只1人参加会议;
 5)C,D两人中也只要1人参加会议;
 6)如果D不去,那么E也决定不去。
 */
public class join {
	public static void main(String[] args) {
		for (int a1 = 0; a1 <= 1; a1++) {
			for (int a2 = 0; a2 <= 1; a2++) {
				for (int a3 = 0; a3 <= 1; a3++) {
					for (int a4 = 0; a4 <= 1; a4++) {
						for (int a5 = 0; a5 <= 1; a5++) {
							for (int a6 = 0; a6 <= 1; a6++) {
								if (ok(a1, a2, a3, a4, a5, a6)) {
									System.out.println("a1--" + a1 + ",a2--"
											+ a2 + ",a3--" + a3 + ",a4--" + a4
											+ ",a5--" + a5 + ",a6--" + a6);
									break;
								}
							}
						}
					}
				}
			}
		}
		
	}

	private static boolean ok(int a1, int a2, int a3, int a4, int a5, int a6) {
		if (!(countGo(a1, a2) >= 1)) {// A,B两人至少有1人参加会议;
			return false;
		}
		if (!(countGo(a1, a5, a6) == 2)) {// A,E,F 3人中有2人参加会议;
			return false;
		}
		if (!(countGo(a2, a3) == 2 || countGo(a2, a3) == 0)) {// B和C两人一致决定,要么两人都去,要么两人都不去;
			return false;
		}
		if (!(countGo(a1, a4) == 1)) {// A,D两人中只1人参加会议;
			return false;
		}
		if (!(countGo(a3, a4) == 1)) {// C,D两人中也只要1人参加会议;
			return false;
		}
		if (countGo(a4) == 0 && countGo(a5) == 1) {// 如果D不去,那么E也决定不去。
			return false;
		}
		return true;
	}

	private static int countGo(int... mee) {
		int count = 0;
		for (int me : mee) {
			if (me == 1) {
				count++;
			}
		}
		return count;
	}

}


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值