关闭

机器学习实战笔记之五(Logistic 回归)

标签: 机器学习python
5935人阅读 评论(2) 收藏 举报
分类:

Logistic 回归的一般过程

收集数据:采用任意方法收集数据。

准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式最佳。

分析数据:采用任意方法对数据进行分析。

训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。

使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定他们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他的分析工作。


Logistic回归

优点:计算代价不高,易于理解和实现。

缺点:容易欠拟合,分类精度可能不高。

适用数据类型:数值型和标称型数据。


Sigmoid函数,参见百度百科。


===========chapter 5.2===============

代码如下,修改了2处。

1. return weights.getA()

2. 移除weights=wei.getA()

#coding=utf-8

from numpy import *

# 打开文本文件并进行逐行读取
def loadDataSet():
    dataMat=[]
    labelMat=[]
    fr=open('testSet.txt')
    for line in fr.readlines():
        lineArr=line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return  dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

# dataMatIn存放的是3个特征,是100*3的矩阵
# classLabels存放的是类别标签,是1*100的行向量
def gradAscent(dataMatIn,classLabels):
    # 转换为NumPy矩阵数据类型
    dataMatrix=mat(dataMatIn)
    labelMat=mat(classLabels).transpose()
    m,n=shape(dataMatrix)
    alpha=0.001 # 向目标移动的步长
    maxCycles=500 # 迭代次数
    weights=ones((n,1))
    for k in range(maxCycles):
        # 矩阵相乘
        h=sigmoid(dataMatrix*weights) # 列向量的元素个数等于样本个数
        error=(labelMat-h)
        weights=weights+alpha*dataMatrix.transpose()*error
    # getA() Return self as an ndarray object.
    return weights.getA()

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr=array(dataMat)
    n=shape(dataArr)[0]
    xcord1=[]
    ycord1=[]
    xcord2=[]
    ycord2=[]
    for i in range(n):
        if int(labelMat[i])==1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])
    fig=plt.figure()
    ax=fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
    x=arange(-3.0,3.0,0.1)
    y=(-weights[0]-weights[1]*x)/weights[2] # 最佳拟合直线
    ax.plot(x,y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()
并在运行时,写入以下代码,定义weights:

>>> import logRegres
>>> from numpy import *
>>> dataArr,labelMat=logRegres.loadDataSet()
>>> weights=logRegres.gradAscent(dataArr,labelMat)
>>> weights
array([[ 4.12414349],
       [ 0.48007329],
       [-0.6168482 ]])
>>> logRegres.plotBestFit(weights)

===========chapter 5.3===============

5.3.1 准备数据:处理数据中的缺失值

可选的做法:

  • 使用可用特征的均值来填补缺失值;
  • 使用特征值来填补缺失值,如-1;
  • 忽略有缺失值的样本;
  • 使用相似样本的均值填补缺失值;
  • 使用另外的机器学习算法预测缺失值。

如果在测试数据集中发现了一条数据的类别标签已经缺失,那么我们的简单做法是将该条数据丢弃。因为类别标签与特征不同,很难确定采用某个合适的值来替换。


在运行代码 logRegres.multiTest() 时,会出现:


RuntimeWarning: overflow encountered in exp 的提示,说明计算的数据结果溢出了。虽然忽略这个报错也无妨。

如果有强迫症的话,比如本狗。。。需要做以下调整,使用longfloat() 来解决溢出:

def sigmoid(inX):
    return longfloat( 1.0/(1+exp(-inX)))


总结

Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合参数,求解过程可以由最优化算法来完成。





2
0
查看评论

BP神经网络python简单实现2(性能优化)

这一版本主要是对 http://blog.csdn.net/net_wolf_007/article/details/52055718 实现的版本进行优化 上一版本主要是根据理论知识实现简单版本,步聚比较清晰。里面存在严重的性能问题,对激活函数的扩展问题及不能批量训练等主要问题。 性能上在...
  • net_wolf_007
  • net_wolf_007
  • 2016-08-04 19:11
  • 2635

训练mask-rcnn时报错,RuntimeWarning: overflow encountered in exp

在py-faster-rcnn的基础上修改为mask-rcnn的过程中,遇到很多问题,其中训练的时候报exp的溢出错误。 该错误是因为mask分支的loss过大,在同faster-rcnn共享同一个学习率的时候,梯度回传过大,导致梯度爆炸,进而出现溢出错误。 在faster-rcnn的bbox_...
  • lanyuxuan100
  • lanyuxuan100
  • 2017-12-26 10:27
  • 465

机器学习实战--chapter 5 Logistic Regression(二)疝气预测马死亡

1 LR模型与算法LR模型与算法原理参见上一篇博客。2 模型场景注:疝气:描述马胃肠病的术语。得到一批数据集,包含了368个样本,大部分有tag,每个样本的特征28个,通过这些训练出一个模型。下次我们只要输入一些特征,就能预测马屁是否会死亡。3 准备数据数据收集已经完成,接下来准备数据,主要处理数据...
  • fdtl01
  • fdtl01
  • 2017-03-23 00:10
  • 379

Python基本语法_异常处理详解

目录目录 异常 异常类型 异常处理 触发异常raise 传递异常 assert语句触发异常 捕获异常tryexceptelse 捕捉多个异常 tryfinally语句 自定义异常 withas触发异常自动关闭资源 as获取异常信息 异常参数 traceback追踪异常 sysexc_info获取异常...
  • Jmilk
  • Jmilk
  • 2015-11-26 01:40
  • 5609

机器学习4logistic回归

对于线性回归、logistic回归,在以前准备学习深度学习的时候看过一点,当时的数学基础有点薄弱,虽然现在还是有点差,当时看到神经网络之后就看不下去了。 不过这次是通过python对logistic回归进行编码实现。 线性回归跟逻辑回归介绍就不多说了。网上有很多很好的讲解。另外我之前也写过自己学...
  • a4875030
  • a4875030
  • 2014-02-16 20:52
  • 618

《机器学习实战》Logistic回归算法(1)

============================================================================================ 《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记,包含对其中算法的理解和算法的Python代码实现 ...
  • Gamer_gyt
  • Gamer_gyt
  • 2016-04-25 00:13
  • 14362

机器学习实战笔记5(logistic回归)

1:简单概念描述 假设现在有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归。训练分类器就是为了寻找最佳拟合参数,使用的是最优化算法。 基于sigmoid函数分类:logistic回归想要的函数能够接受所有的输入然后预测出类别。这个函数就是sigmoid函数...
  • Lu597203933
  • Lu597203933
  • 2014-08-10 11:12
  • 19107

《机器学习实战》笔记之五——Logistic回归

第五章 Logistic回归 回归:对一些数据点,算法训练出直线参数,得到最佳拟合直线,能够对这些点很好的拟合。 训练分类器主要是寻找最佳拟合参数,故为最优化算法。 5.1 基于Logistic回归和sigmoid函数的分类 实现Logistic回归分类器:在每个特征上都乘以一个回归系数,...
  • u010454729
  • u010454729
  • 2015-09-07 22:48
  • 2013

《机器学习实战》——Logistic回归

这是《机器学习实战》中的第五章Logistic回归知识的整理以及自己的一些私人理解,之后运用原理对周志华的《机器学习》中的西瓜数据进行分类。(PS:因为上述两本书以及网易公开课上的斯坦福的机器学习视频都在同时看,所以博客可能有点杂。)最后希望给一起学习机器学习的同学一些帮助。资源也已经上传了,名称叫...
  • qq_30091945
  • qq_30091945
  • 2017-03-04 11:32
  • 1087

机器学习实战之Logistic回归

  • 2017-11-14 09:33
  • 9KB
  • 下载
    个人资料
    • 访问:30192次
    • 积分:263
    • 等级:
    • 排名:千里之外
    • 原创:20篇
    • 转载:27篇
    • 译文:0篇
    • 评论:4条
    文章分类
    最新评论