关闭

第十一周项目2 - 用二叉树求解代数表达式

123人阅读 评论(0) 收藏 举报

问题及代码:

    /* 
    Copyright (c)2015,烟台大学计算机与控制工程学院 
    All rights reserved. 
    文件名称:第十一周项目2 - 用二叉树求解代数表达式.cpp 
    作    者:孙翰文
    完成日期:2015年11月20日 
    版 本 号:v1.0 

    问题描述:  用二叉树来表示代数表达式,树的每一个分支节点代表一个运算符,每一个叶子节点代表一个运算数(为简化,只支持二目运算的+、-、*、/,不加括号, 
               运算数也只是一位的数字字符。本项目只考虑输入合乎以上规则的情况)。请设计算法, 
              (1)根据形如“1+2?3?4/5”的字符串代表的表达式,构造出对应的二叉树(如图), 
               用后序遍历的思路计算表达式的值时,能体现出先乘除后加减的规则; 
              (2)对构造出的二叉树,计算出表达式的值。  
    输入描述: 若干测试数据。 
    程序输出: 代数表达式,对应二叉树,表达式的值。  
    */  
    #include <stdio.h>  
    #include <malloc.h>  
    #include<string.h>  
    #include <stdlib.h>    
    #define MaxSize 100  
    typedef char ElemType;  
    typedef struct node  
    {  
        ElemType data;              //数据元素  
        struct node *lchild;        //指向左孩子  
        struct node *rchild;        //指向右孩子  
    } BTNode;  
    void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链  
    BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针  
    BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针  
    BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针  
    int BTNodeDepth(BTNode *b); //求二叉树b的深度  
    void DispBTNode(BTNode *b); //以括号表示法输出二叉树  
    void DestroyBTNode(BTNode *&b);  //销毁二叉树  

    void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链  
    {  
        BTNode *St[MaxSize],*p=NULL;  
        int top=-1,k,j=0;  
        char ch;  
        b=NULL;             //建立的二叉树初始时为空  
        ch=str[j];  
        while (ch!='\0')    //str未扫描完时循环  
        {  
            switch(ch)  
            {  
            case '(':  
                top++;  
                St[top]=p;  
                k=1;  
                break;      //为左节点  
            case ')':  
                top--;  
                break;  
            case ',':  
                k=2;  
                break;                          //为右节点  
            default:  
                p=(BTNode *)malloc(sizeof(BTNode));  
                p->data=ch;  
                p->lchild=p->rchild=NULL;  
                if (b==NULL)                    //p指向二叉树的根节点  
                    b=p;  
                else                            //已建立二叉树根节点  
                {  
                    switch(k)  
                    {  
                    case 1:  
                        St[top]->lchild=p;  
                        break;  
                    case 2:  
                        St[top]->rchild=p;  
                        break;  
                    }  
                }  
            }  
            j++;  
            ch=str[j];  
        }  
    }  
    BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针  
    {  
        BTNode *p;  
        if (b==NULL)  
            return NULL;  
        else if (b->data==x)  
            return b;  
        else  
        {  
            p=FindNode(b->lchild,x);  
            if (p!=NULL)  
                return p;  
            else  
                return FindNode(b->rchild,x);  
        }  
    }  
    BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针  
    {  
        return p->lchild;  
    }  
    BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针  
    {  
        return p->rchild;  
    }  
    int BTNodeDepth(BTNode *b)  //求二叉树b的深度  
    {  
        int lchilddep,rchilddep;  
        if (b==NULL)  
            return(0);                          //空树的高度为0  
        else  
        {  
            lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep  
            rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep  
            return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);  
        }  
    }  
    void DispBTNode(BTNode *b)  //以括号表示法输出二叉树  
    {  
        if (b!=NULL)  
        {  
            printf("%c",b->data);  
            if (b->lchild!=NULL || b->rchild!=NULL)  
            {  
                printf("(");  
                DispBTNode(b->lchild);  
                if (b->rchild!=NULL) printf(",");  
                DispBTNode(b->rchild);  
                printf(")");  
            }  
        }  
    }  
    void DestroyBTNode(BTNode *&b)   //销毁二叉树  
    {  
        if (b!=NULL)  
        {  
            DestroyBTNode(b->lchild);  
            DestroyBTNode(b->rchild);  
            free(b);  
        }  
    }  


    //用s[i]到s[j]之间的字符串,构造二叉树的表示形式  
    BTNode *CRTree(char s[],int i,int j)  
    {  
        BTNode *p;  
        int k,plus=0,posi;  
        if (i==j)    //i和j相同,意味着只有一个字符,构造的是一个叶子节点  
        {  
            p=(BTNode *)malloc(sizeof(BTNode));   //分配存储空间  
            p->data=s[i];                         //值为s[i]  
            p->lchild=NULL;  
            p->rchild=NULL;  
            return p;  
        }  
        //以下为i!=j的情况  
        for (k=i; k<=j; k++)  
            if (s[k]=='+' || s[k]=='-')  
            {  
                plus++;  
                posi=k;              //最后一个+或-的位置  
            }  
        if (plus==0)                 //没有+或-的情况(因为若有+、-,前面必会执行plus++)  
            for (k=i; k<=j; k++)  
                if (s[k]=='*' || s[k]=='/')  
                {  
                    plus++;  
                    posi=k;  
                }  
        //以上的处理考虑了优先将+、-放到二叉树较高的层次上  
        //由于将来计算时,运用的是后序遍历的思路  
        //处于较低层的乘除会优先运算  
        //从而体现了“先乘除后加减”的运算法则  
        //创建一个分支节点,用检测到的运算符作为节点值  
        if (plus!=0)  
        {  
            p=(BTNode *)malloc(sizeof(BTNode));  
            p->data=s[posi];                //节点值是s[posi]  
            p->lchild=CRTree(s,i,posi-1);   //左子树由s[i]至s[posi-1]构成  
            p->rchild=CRTree(s,posi+1,j);   //右子树由s[poso+1]到s[j]构成  
            return p;  
        }  
        else       //若没有任何运算符,返回NULL  
            return NULL;  
    }  

    double Comp(BTNode *b)  
    {  
        double v1,v2;  
        if (b==NULL)  
            return 0;  
        if (b->lchild==NULL && b->rchild==NULL)  //叶子节点,应该是一个数字字符(本项目未考虑非法表达式)  
            return b->data-'0';    //叶子节点直接返回节点值,结点中保存的数字用的是字符形式,所以要-'0'  
        v1=Comp(b->lchild); //先计算左子树  
        v2=Comp(b->rchild); //再计算右子树  
        switch(b->data)     //将左、右子树运算的结果再进行运算,运用的是后序遍历的思路  
        {  
        case '+':  
            return v1+v2;  
        case '-':  
            return v1-v2;  
        case '*':  
            return v1*v2;  
        case '/':  
            if (v2!=0)  
                return v1/v2;  
            else  
                abort();  
        }  
    }  

    int main()  
    {  
        BTNode *b;  
        char s[MaxSize]="1+2*3-4/5";  
        printf("代数表达式%s\n",s);  
        b=CRTree(s,0,strlen(s)-1);  
        printf("对应二叉树:");  
        DispBTNode(b);  
        printf("\n表达式的值:%g\n",Comp(b));  
        DestroyBTNode(b);  
        return 0;  
    }  

运行结果:

这里写图片描述

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:11282次
    • 积分:631
    • 等级:
    • 排名:千里之外
    • 原创:54篇
    • 转载:0篇
    • 译文:0篇
    • 评论:1条
    最新评论