# LeetCode 209 Minimum Size Subarray Sum

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

More practice:

If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

Runtime: 1 ms

O(n) time, O(1) space moving window method
using a moving window [left,i] to calculate the sum, first move i forward to get a sub-array with sum>=s, then move left forward to make sum < s, then move end again,..., until i reach the end of array.
	public int minSubArrayLen(int s, int[] nums) {
int min = Integer.MAX_VALUE, left = 0;
for (int i = 0; i < nums.length; i++) {
s -= nums[i];
while (s <= 0) {
min = Math.min(min, i - left + 1);
s += nums[left++];
}
}
return min == Integer.MAX_VALUE ? 0 : min;
}


• 本文已收录于以下专栏：

举报原因： 您举报文章：LeetCode 209 Minimum Size Subarray Sum 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)