RMQ实现LCA

原创 2012年03月30日 21:50:31

RMQ实现LCA。。。。。。。。。。弄了一下午,终于搞定了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<climits>
using namespace std;

const int N = 100005; //不同结点数
const int M = N * 2; //总结点数
int visit[M], level[M], first[N];
int q[20][N];
int num;

struct Node
{
    int father;
    vector<int> son;
    Node()
    {
        father = -1;
        son.clear();
    }
}node[N];

void DFS(int cur, int now)
{
     if(first[now] == -1)
        first[now] = num;
    level[num] = cur;
    visit[num++] = now;

    if(node[now].son.size() == 0) //终止条件
        return ;

    for(vector<int>::iterator i = node[now].son.begin(); i != node[now].son.end(); ++i)
        {
            DFS(cur + 1, *i);
            visit[num] = now;
            level[num++] = cur;
        }
}

void RMQ(int n)
{
    for(int i = 1; i <= n; ++i)
        q[0][i] = level[i];
    for(int i = 1; i != 20; ++i)
        for(int j = 1; j <= n; ++j)
            if(j + (1 << i) - 1 <= n)
                q[i][j] = min(q[i - 1][j], q[i - 1][j + (1 << i >> 1)]);
}

int main()
{
    int vnum, edge, query;
    int a, b;
    int start, end;
    while(scanf("%d %d %d", &vnum, &edge, &query) != EOF)
    {
        memset(first, -1, sizeof(first));
        num = 1;
        for(int i = 0; i < edge; ++i)
        {
            scanf("%d %d", &a, &b);
            node[a].son.push_back(b);
            node[b].father = a;
        }
        DFS(0, 1);
        RMQ(num - 1);
        while(query--)
        {
            scanf("%d %d", &start, &end);
        start = first[start], end = first[end];
        if(start > end)
            swap(start, end);
        int k = (int)(log(end - start + 1.0) / log(2.0));
        int res = min(q[k][start], q[k][end - (1 << k) + 1]);
        int ans;
        for(int i = start; i <= end; ++i)
            if(level[i] == res)
            {
                ans = i;
                break;
            }
        printf("%d\n", visit[ans]);
        }
    }
    return 0;
}


相关文章推荐

最近公共祖先(LCA)算法实现过程 【Tarjan离线+倍增在线+RMQ】

最近公共祖先(LCA) 首先来介绍下最近公共祖先(LCA)的概念 百度上的解释:对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、v的祖先且x的深度...

RMQ与LCA问题

  • 2013年03月08日 16:31
  • 684KB
  • 下载

打萎的RMQ 和 LCA

  • 2017年10月27日 10:36
  • 680KB
  • 下载

B - 雲に潜む一つ眼の化生 POJ - 1986 LCA->RMQ模板【下标从1开始】

//#include //#pragma comment(linker, "/STACK:1024000000,1024000000") #include #include #include #in...

LCA问题归约成RMQ求解

  • 2009年01月09日 16:10
  • 538KB
  • 下载

郭华阳《RMQ与LCA问题》

  • 2009年08月10日 10:16
  • 140KB
  • 下载

普通RMQ问题转化为LCA问题的算法

基本思想是通过对问题的转化,最终得到时间复杂度。 该算法分以下两大步骤: 1)将RMQ问题转化为LCA问题:先构建输入数列A的笛卡尔树,构建笛卡尔树的复杂度为O(n)。 2)将LCA问题转化为RMQ...

ACM中的RMQ和LCA问题

  • 2011年01月16日 14:17
  • 239KB
  • 下载

RMQ和LCA详解

  • 2013年04月19日 01:56
  • 647KB
  • 下载

poj2763 Housewife Wind--LCA转RMQ

原题链接:http://poj.org/problem?id=2763 题意:n个点,n-1条点的连线,数据保证任意两点可达,无环,接下来q行操作,两种形式,0 u 表示查询该人到u的时间;...
  • LaoJiu_
  • LaoJiu_
  • 2016年09月23日 11:07
  • 200
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:RMQ实现LCA
举报原因:
原因补充:

(最多只允许输入30个字)