支持超级兔子,鄙视Yahoo!

原创 2006年05月21日 09:09:00
<script type="text/javascript"><!-- google_ad_client = "pub-2899870276269363"; google_ad_width = 728; google_ad_height = 15; google_ad_format = "728x15_0ads_al_s"; google_ad_channel ="9481915012"; google_color_border = "FFFFFF"; google_color_link = "0000FF"; google_color_bg = "FFFFFF"; google_color_text = "000000"; google_color_url = "008000"; //--></script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>

今天在超级兔子的网站上看到“[公告]超级兔子已经收到Yahoo(中国)发来的邮件”,原文如下: 

尊敬的alibaba-inc.com公司:

超级兔子作者在今日已经收到贵公司发来的:关于超级兔子恶意删除网络实名、雅虎助手的邮件了,超级兔子非常愿意配合贵公司,但也请告诉我们如何修改程序,才不算恶意删除网络实名、雅虎助手呢?

此  致!

蔡旋
2006-5-15

原文:http://www.pctutu.com/news.asp?id=69 , http://solidot.org/article.php/20060521004041851

       对于Yahoo,不管他做的多么成功,但是我一直很鄙视它,尤其是网络实名,这么大个公司非要整些个流氓插件,并不以为耻,反以为荣,你说这个网络实名嘛,如果好用也就算了,一不小心装了后,在IE里尽管些色情网站的链接,删都删不掉,极度令人讨厌。这么大的个Yahoo(中国),整这些下三滥的招式,极度让人不爽,我觉得是辱没了这么好的Yahoo的一个品牌了。

可笑的是Yahoo自己整些不光彩的事情,自己暗地里知道也就算了,还敢发信来警告一下,呵呵,我想不光不会取得预期的效果,反而免费给超级兔子做做广告。下一步怎么办,对薄公堂吗,那估计将会是“一个馒头引发的血案”超级兔子版了。 <script type="text/javascript"><!-- google_ad_client = "pub-2899870276269363"; google_ad_width = 300; google_ad_height = 250; google_ad_format = "300x250_as"; google_ad_type = "text_image"; google_ad_channel ="9481915012"; google_color_border = "FFFFFF"; google_color_link = "0000FF"; google_color_bg = "FFFFFF"; google_color_text = "000000"; google_color_url = "008000"; //--></script><script type="text/javascript" src="http://pagead2.googlesyndication.com/pagead/show_ads.js"> </script>
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Yahoo! s4和Twitter storm的粗略比较

转自:http://www.blogjava.net/killme2008/archive/2011/11/10/363238.html ------------------------------...
  • jmppok
  • jmppok
  • 2013-11-20 13:37
  • 1378

Yahoo! 十三条 : 前端网页优化(13+1)条原则

Yahoo! 十三条 : 前端网页优化(13+1)条原则1. 减少HTTP请求次数  据统计,有80%的最终用户响应时间是花在前端程序上,而其大部分时间则花在各种页面元素,如图像、样式表、脚本和Fla...

Yahoo!S4分布式流处理引擎分析总结

S4(Simple Scalable Streaming System)是一个分布式流处理引擎,开发者可以在这个引擎基础上开发面向无界的,不间断的流数据处理应用。 什么是流数据处理应用?例如,为了个...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)