# python中的random使用

（1）random.seed([x])

>>>from random import *
>>>a = Random(); a.seed(1)
>>>[a.randint(1, 100) for i in range(20)]
[14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4]

>>>b = Random(); b.seed(1)
>>>[b.randint(1, 100) for i in range(20)]
[14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4]

(2)random.random

(3)random.uniform

(4)random.randint

(5)random.randrange

(6)random.choice

(7)random.shuffle

(8)random.sample(sequence, k)，从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。

(9)random.triangular(low, high, mode)

Return a random floating point number N such that low <= N <= high and with the specified mode between those bounds. The low and highbounds default to zero and one. The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.

(10)random.betavariate(alpha, beta)β分布
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1.

(11)random.expovariate(lambd)指数分布

Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

(12)random.gammavariate(alpha, beta)伽马分布

Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0.

(13)random.gauss(mu, sigma)高斯分布
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate() function defined below.

(14)random.lognormvariate(mu, sigma)对数正态分布
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

(15)random.normalvariate(mu, sigma)正态分布

Normal distribution. mu is the mean, and sigma is the standard deviation.
random.vonmisesvariate(mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.

（16）random.paretovariate(alpha)帕累托分布
Pareto distribution. alpha is the shape parameter.

（17）random.weibullvariate(alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.
• 本文已收录于以下专栏：

## Python-random的用法

• y472360651
• 2017年06月13日 14:05
• 892

## python uniform 函数

python的 uniform 函数
• taotiezhengfeng
• 2017年06月06日 09:32
• 913

## Python中的random库

• Javasus
• 2013年01月22日 14:21
• 11499

## python pandas中的random模块一些函数的用法

seed( ) 用于指定随机数生成时所用算法开始的整数值，如果使用相同的seed( )值，则每次生成的随即数都相同，如果不设置这个值，则系统根据时间来自己选择这个值，此时每次生成的随机数因时间差异而不...
• wang1127248268
• 2016年12月12日 21:41
• 1366

## Python模块：生成随机数模块random

http://blog.csdn.net/pipisorry/article/details/39086463随机数种子要每次产生随机数相同就要设置种子，相同种子数的Random对象，相同次数生成的随...
• pipisorry
• 2014年09月05日 22:30
• 34852

## Python Random随机数

Python产生随机数的功能在random模块中实现，实现了各种分布的伪随机数生成器 该模块可以生成0到1的浮点随机数，也可以在一个序列中进行随机选择，产生的随机数可以是均匀分布，高斯分布，...
• Calling_Wisdom
• 2014年11月05日 14:28
• 9314

## Python的numpy库中rand(),randn(),randint(),random_integers()等random系函数的使用

• m0_38061927
• 2017年07月19日 09:43
• 8671

## python中的随机函数random

• xun527
• 2017年08月05日 23:22
• 449

## Python Random函数常用方法及示例

• Cavien
• 2016年11月16日 19:09
• 759

## Python中的random模块

• hncomputer
• 2014年07月09日 11:15
• 15348

举报原因： 您举报文章：python中的random使用 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)