csu1798 小Z的城市

原创 2016年08月30日 15:28:46

小Z的城市

Time Limit: 5 Sec  Memory Limit: 128 MB

Description

小Z身为A国的君王,A国的所有城市都归小A所有,A国中从任意一个城市出发都能到达其他任意一个城市,每两个直接相邻的城市xi , yi之间都有一条已知长度的路径相连。A国共有n个城市(编号为1~n),被n-1条无向边相连。小Y和小X的开国功臣,但是小X擅文,小Y好武,所以他们关系很差,现在小Z想在区间[l ,r]的城市中选择两个奖赏这两位开国功臣一人一个城市,彼此厌恶的小X和小Y想让聪明的你飞到A国帮助他们做出选择可以距离彼此更远。

(也就是说最后小X会选择城市idx(l<=idx<=r) , 小Y会选择城市idy(l<=idy<=r) , 保证idx!=idy 而且idx距离idy尽可能远)。

Input

多组数据

每组数据第一行两个正整数n和q 表示A国有n个城市,q次询问 ( 2<=n <=100000 , q<=100000 )

接下来n-1行,每行输入3个正整数xi , yi , di 表示城市xi与yi被一条长度为di的路径相连

(1<=xi , yi<=n , di<=100)

接下来q个询问,每次询问输入一行li和ri,对于每次询问希望在li和ri区间选择两个城市分给小X和小Y,使他们距离最大 (1<=li < ri<=n)

所有数据保证Σn <=500000

Output

每次询问输出一个使小X和小Y距离的最大值

Sample Input

5 1
1 2 1
2 3 2
1 4 3
4 5 4
2 5

Sample Output

10


可以参考http://blog.csdn.net/werkeytom_ftd/article/details/51791519

其实这个问题可以转换为每次给你一个子树,求子树的直径,如果给的点是不联通的,加入中间的点使他联通,这不影响原本的最远点对。

然后树的直径有这么一个性质,两颗树合成一棵树,新树的最远点对一定是原本两棵树最远点对中的点。你可以想象一下一棵树随便找个地方切一刀变成两棵树,那么原本的最远点对在新的两棵树中肯定也是最远的点对最佳候补,大概这么一个感觉。

然后这题就可以用线段树维护查询了,合并的时候只要把左右区间的最远点对取出来枚举一下哪两个可以形成新的最远点对。至于两点距离,可以先预处理出每个点到根结点的距离dis[i],然后两点u和v的距离就是dis[u]+dis[v]-dis[lca(u,v)],lca(u,v)为两点公共祖先。


以下代码

#include <stdio.h>
#include <algorithm>
#include <set>
#include <string.h>
#include <math.h>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const double PI = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3fll;
const int mod = 1e9 + 7;
const int maxn = 100000 + 10;

//顶点编号从0开始
const int max_v = 222222;
const int max_log_v = 22;

vector<PII> g[max_v];
int root;

int parent[max_log_v][max_v];
int depth[max_v];
int cost[max_v];

void dfs(int v, int p, int d, int c) {
    parent[0][v] = p;
    depth[v] = d;
    cost[v] = c;
    for (int i = 0; i < g[v].size(); ++i) {
        if (g[v][i].fi != p) dfs(g[v][i].fi, v, d + 1, c + g[v][i].se);
    }
}

void init(int V) {
    dfs(root, -1, 0, 0);
    for (int k = 0; k + 1 < max_log_v; ++k) {
        for (int v = 0; v < V; ++v) {
            if (parent[k][v] < 0) parent[k + 1][v] = -1;
            else parent[k + 1][v] = parent[k][parent[k][v]];
        }
    }
}

int lca(int u, int v) {
    if (depth[u] > depth[v]) swap(u, v);
    for (int k = 0; k < max_log_v; ++k) {
        if ((depth[v] - depth[u]) >> k & 1) {
            v = parent[k][v];
        }
    }
    
    if (u == v) return u;
    
    for (int k = max_log_v - 1; k >= 0; k--) {
        if (parent[k][u] != parent[k][v]) {
            u = parent[k][u];
            v = parent[k][v];
        }
    }
    return parent[0][u];
}

int get_distance(int u, int v) {
    return cost[u] + cost[v] - 2 * cost[lca(u, v)];
}



vector<int> point[4 * maxn];

vector<int> get_point(vector<int> a, vector<int> b) {
    for (int i = 0; i < b.size(); i++) {
        a.push_back(b[i]);
    }
    if (a.size() <= 2) return a;
    
    int mx = 0;
    vector<int> ans;
    for (int i = 0; i < a.size(); i++) {
        for (int j = i + 1; j < a.size(); ++j) {
            int dis = get_distance(a[i], a[j]);
            if (dis > mx) {
                mx = dis;
                ans.clear();
                ans.push_back(a[i]);
                ans.push_back(a[j]);
            }
        }
    }
    return ans;
}

void get_tree(int k, int l, int r) {
    if (r - l == 1) {
        point[k].push_back(l);
        return;
    }
    
    get_tree(k * 2 + 1, l, (l + r) / 2);
    get_tree(k * 2 + 2, (l + r) / 2, r);
    point[k] = get_point(point[k * 2 + 1], point[k * 2 + 2]);
}

vector<int> query(int a, int b, int k, int l, int r) {
    vector<int> ans;
    if (r <= a || b <= l) return ans;
    
    if (a <= l && r <= b) return point[k];
    else {
        vector<int> vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
        vector<int> vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
        return get_point(vl, vr);
    }
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("test.in", "r", stdin);
#endif
    
    int n, q;
    while (~scanf("%d%d", &n, &q)) {
        for (int i = 0; i < n; i++) g[i].clear();
        for (int i = 0; i < 4 * n; i++) point[i].clear();
        
        for (int i = 0; i < n - 1; i++) {
            int u, v, c;
            scanf("%d%d%d", &u, &v, &c);
            u--, v--;
            g[u].push_back(PII(v, c));
            g[v].push_back(PII(u, c));
        }
        root = 0;
        init(n);
        get_tree(0, 0, n);
        
        
        for (int i = 0; i < q; ++i) {
            int l, r;
            scanf("%d%d", &l, &r);
            l--, r--;
            vector<int> v = query(l, r + 1, 0, 0, n);
            printf("%d\n", get_distance(v[0], v[1]));
        }
    }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

CSU 1799 小Z的黑白棋

算两次

CSU 1596 Dick.Z 的炉石赛 数学期望

1596: Dick.Z 的炉石赛 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 53  Solved: 39 [Submit][Status]...
  • wr132
  • wr132
  • 2015-05-04 07:49
  • 574

Android ListView城市列表,按a-z分组字母索引排序

在上一篇中实现了,先自定义数据源,使Adapter通过实现SectionIndexer接口给ListView分组,并用Collections.sort对数据list进行排序。        但是C...

[Android精品源码] Android 仿美团网,探索ListView的A-Z字母排序功能实现选择城市

[Android精品源码] Android 仿美团网,探索ListView的A-Z字母排序功能实现选择城市

BZOJ1798 维护序列seq

题目Description老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (...

城市排序(A~Z)

BZOJ 1798, 维护序列

维护一个数列,要求支持区间加、区间乘以及查询操作。很裸的线段树,难点在于加法和乘法的操作顺序。 标记下传时应先打乘法标记,再打加法标记,同时更新时还要用乘法标记维护加法标记。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)