关闭

【ZOJ】3233【容斥原理】【Lucky Number】

428人阅读 评论(0) 收藏 举报
分类:

Lucky Number
——————————————————————————–

Time Limit: 5Seconds     Memory Limit: 32768 KB
——————————————————————————–

Watashi loves M mm very much. One day, M mm gives Watashi achance to choose a number between low and high, and if the choosennumber is lucky, M mm will marry him.

M mm has 2 sequences, the first one is BLN (Basic LuckyNumbers), and the second one is BUN (Basic Unlucky Numbers). Shesays that a number is lucky if it’s divisible by at least onenumber from BLN and not divisible by at least one number fromBUN.

Obviously, Watashi doesn’t know the numbers in these 2sequences, and he asks M mm that how many lucky number are there in[low, high]?

Please help M mm calculate it, meanwhile, tell Watashi what isthe probability that M mm marries him.

Input

The first line of each test case contains the numbers NBLN (1<= NBLN <= 15), NBUN (1<= NBUN <= 500), low, high (1<= low <= high <=1018).

The second and third line contain NBLN and NBUN integers,respectively. Each integer in sequences BLN and BUN is frominterval [1, 32767].

The last test case is followed by four zero.

The input will contain no more than 50 test cases.

Output

For each test case output one number, the number of lucky numberbetween low and high.

Sample Input

2 1 70 81
2 3
5
0 0 0 0
Sample Output

5
Hint

The lucky numbers in the sample are 72, 74, 76, 78, 81.

解题思路:

  命题A:至少能被BLN中的一个数整除

  命题B:至少不能被BUN中的一个数整除

 所以A&&B=A-A&&(~B);

题目就是求[low,high]中符合A&&B的数的个数,用容斥原理求出符合A的个数并减去符合A&&(~B)的个数;

求出BUN中所有数的最小公倍数p,

递归从BLN中取出k个数,求他们的最小公倍数g,

求出p和g的最小公倍数s;

当k为奇数:ans+=high/g-high/s-((low-1)/g-(low-1)/s);

当k为偶数:ans-=high/g-high/s-((low-1)/g-(low-1)/s);(容斥原理)

ans就是最后结果;

时间复杂度:2^15

#include<stdio.h>
#define BG 1000000000000000000LL

#define long_long long long
long_long ans,l,h,p,n;
long_long a[18],b[505];
long_long gcd(long_long a,long_long b)
{
      if (b==0) return a;
     else return gcd(b,a%b);
}
long_long calc(long_long g,long_long k,long_long t)
{
        long_long gg,s;
      if (t==n+1)
       {
         if (k!=0)
         {
                 s=gcd(p,g);
                 if (p/s>BG/g) s=h+1;
                       else
                              s=p/s*g;
                    if (k%2==0)
                               ans-=h/g-h/(s)-((l-1)/g-(l-1)/(s));
                 else
                              ans+=h/g-h/(s)-((l-1)/g-(l-1)/(s));
         }
         return 0;
 }
 gg=gcd(g,a[t]);
     if (g/gg>BG/a[t]) gg=h+1;
  else
              gg=g/gg*a[t];
       calc(gg,k+1,t+1);
   calc(g,k,t+1);
}
int main()
{
    long_long m,i,k;
     while(scanf("%lld%lld%lld%lld",&n,&m,&l,&h)!=EOF)
 {
         if ((n==0)&&(m==0)&&(l==0)&&(h==0)) break;
              for(i=1;i<=n;i++)
                  scanf("%lld",&a[i]);
                for(i=1;i<=m;i++)
                  scanf("%lld",&b[i]);
                p=b[1];
             for(i=2;i<=m;i++)
          {
                 k=gcd(p,b[i]);
                      if (p/k>BG/b[i]) p=h+1;
                    else
                              p=p/k*b[i];
         }
         ans=0;
              calc(1,0,1);
                printf("%lld\n",ans);
  }
}


姐华丽丽的没做出来,就找了大牛写的,嘿嘿;做人要厚道,贴一下那位大牛的地址吧:

http://acm.nbu.edu.cn/SwordHoly/?p=54
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:10474次
    • 积分:289
    • 等级:
    • 排名:千里之外
    • 原创:18篇
    • 转载:3篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档