【OpenStack源码分析之十一】分布式事务和相关算法

原创 2017年07月25日 23:34:57

前言

【OpenStack源码分析之六】从虚拟机启动流程看安全认证 中有提到一个问题是关于OpenStack的HA机制和灾难恢复(DR机制)的,HA和DR都是保障可用性的,两者都可以用两个维度来衡量,RTO (Recovery Time Objective)和 RPO(Recovery Point Objective)。RTO 是服务恢复的时间,最佳的情况是 0,这意味着服务立即恢复;最坏是无穷大意味着服务永远恢复不了;RPO 是切换时向前恢复的数据的时间长度,0 意味着使用同步的数据,大于 0 意味着有数据丢失,比如 ” RPO = 1 天“ 意味着恢复时使用一天前的数据,那么一天之内的数据就丢失了。因此,恢复的最佳结果是 RTO = RPO = 0,但是这个太理想,或者要实现的话成本太高,全球估计 Visa 等少数几个公司能实现,或者几乎实现。

HA和DR两者相互关联,互相补充,互有交叉,同时又有显著的区别:

  • HA 往往指本地的高可用系统,表示在多个服务器运行一个或多种应用的情况下,应确保任意服务器出现任何故障时,其运行的应用不能中断,应用程序和系统应能迅速切换到其它服务器上运行,即本地系统集群和热备份。HA 往往是用共享存储,因此往往不会有数据丢失(RPO = 0),更多的是切换时间长度考虑即 RTO。

  • DR 是指异地(同城或者异地)的高可用系统,表示在灾害发生时,数据、应用以及业务的恢复能力。异地灾备的数据灾备部分是使用数据复制,根据使用的不同数据复制技术(同步、异步、Strectched Cluster 等),数据往往有损失导致 RPO >0;而异地的应用切换往往需要更长的时间,这样 RT0 >0。 因此,需要结合特定的业务需求,来定制所需要的 RTO 和 RPO,以实现最优的 CTO。

这里先对HA机制里的分布式事务做一些分析,因为OpenStack自身是一个分布式系统,比如Nova Compute在创建虚拟机的流程涉及多个远程资源的操作,这里对整体的分布式事务的处理就是一个很重要的技术点。但是本节我并没有去探究OpenStack的实现,下面的技术可能并不是OpenStack选用的解决方案,我先列一下通用方案,有时间时我再去研究OpenStack的实现方式。

分布式事务

分布式事务当前的处理是有比较成熟的技术,比如两阶段提交和三阶段提交技术,鉴于篇幅,先介绍一下两阶段提交。

先举个栗子,比如在电商系统中,当有用户下单后,除了在订单表插入一条记录外,对应商品表的这个商品数量必须减1吧,怎么保证?!在搜索广告系统中,当用户点击某广告后,除了在点击事件表中增加一条记录外,还得去商家账户表中找到这个商家并扣除广告费吧,怎么保证?!等等,相信大家或多或多少都能碰到相似情景。

本质上问题可以抽象为:当一个表数据更新后,怎么保证另一个表的数据也必须要更新成功。

本地事务
还是以支付宝转账余额宝为例,假设有

  • 支付宝账户表:A(id,userId,amount)
  • 余额宝账户表:B(id,userId,amount)
  • 用户的userId=1;
    从支付宝转账1万块钱到余额宝的动作分为两步:

  • 1)支付宝表扣除1万:update A set amount=amount-10000 where userId=1;

  • 2)余额宝表增加1万:update B set amount=amount+10000 where userId=1;

如何确保支付宝余额宝收支平衡呢?

有人说这个很简单嘛,可以用事务解决。

Begin transaction
         update A set amount=amount-10000 where userId=1;
         update B set amount=amount+10000 where userId=1;
End transaction
commit;

非常正确,如果你使用spring的话一个注解就能搞定上述事务功能。

@Transactional(rollbackFor=Exception.class)
    public void update() {
        updateATable(); //更新A表
        updateBTable(); //更新B表
    }

如果系统规模较小,数据表都在一个数据库实例上,上述本地事务方式可以很好地运行,但是如果系统规模较大,比如支付宝账户表和余额宝账户表显然不会在同一个数据库实例上,他们往往分布在不同的物理节点上,这时本地事务已经失去用武之地。

既然本地事务失效,分布式事务自然就登上舞台。

分布式事务—两阶段提交协议
两阶段提交协议(Two-phase Commit,2PC)经常被用来实现分布式事务。一般分为协调器C和若干事务执行者Si两种角色,这里的事务执行者就是具体的数据库,协调器可以和事务执行器在一台机器上.
这里写图片描述

1) 我们的应用程序(client)发起一个开始请求到TC;

2) TC先将消息写到本地日志,之后向所有的Si发起消息。以支付宝转账到余额宝为例,TC给A的prepare消息是通知支付宝数据库相应账目扣款1万,TC给B的prepare消息是通知余额宝数据库相应账目增加1w。为什么在执行任务前需要先写本地日志,主要是为了故障后恢复用,本地日志起到现实生活中凭证 的效果,如果没有本地日志(凭证),出问题容易死无对证;

3) Si收到消息后,执行具体本机事务,但不会进行commit,如果成功返回,不成功返回。同理,返回前都应把要返回的消息写到日志里,当作凭证。

4) TC收集所有执行器返回的消息,如果所有执行器都返回yes,那么给所有执行器发生送commit消息,执行器收到commit后执行本地事务的commit操作;如果有任一个执行器返回no,那么给所有执行器发送abort消息,执行器收到abort消息后执行事务abort操作。

注:TC或Si把发送或接收到的消息先写到日志里,主要是为了故障后恢复用。如某一Si从故障中恢复后,先检查本机的日志,如果已收到,则提交,如果则回滚。如果是,则再向TC询问一下,确定下一步。如果什么都没有,则很可能在阶段Si就崩溃了,因此需要回滚。

现如今实现基于两阶段提交的分布式事务也没那么困难了,如果使用java,那么可以使用开源软件atomikos(http://www.atomikos.com/)来快速实现。

不过但凡使用过的上述两阶段提交的同学都可以发现性能实在是太差,根本不适合高并发的系统。为什么?

  • 1)两阶段提交涉及多次节点间的网络通信,通信时间太长!
  • 2)事务时间相对于变长了,锁定的资源的时间也变长了,造成资源等待时间也增加好多!

正是由于分布式事务存在很严重的性能问题,大部分高并发服务都在避免使用,往往通过其他途径来解决数据一致性问题。

使用消息队列来避免分布式事务

如果仔细观察生活的话,生活的很多场景已经给了我们提示。

比如在北京很有名的姚记炒肝点了炒肝并付了钱后,他们并不会直接把你点的炒肝给你,而是给你一张小票,然后让你拿着小票到出货区排队去取。为什么他们要将付钱和取货两个动作分开呢?原因很多,其中一个很重要的原因是为了使他们接待能力增强(并发量更高)。

还是回到我们的问题,只要这张小票在,你最终是能拿到炒肝的。同理转账服务也是如此,当支付宝账户扣除1万后,我们只要生成一个凭证(消息)即可,这个凭证(消息)上写着“让余额宝账户增加 1万”,只要这个凭证(消息)能可靠保存,我们最终是可以拿着这个凭证(消息)让余额宝账户增加1万的,即我们能依靠这个凭证(消息)完成最终一致性。

如何可靠保存凭证(消息)
有两种方法:

  • 业务与消息耦合的方式

支付宝在完成扣款的同时,同时记录消息数据,这个消息数据与业务数据保存在同一数据库实例里(消息记录表表名为message)。

Begin transaction
         update A set amount=amount-10000 where userId=1;
         insert into message(userId, amount,status) values(1, 10000, 1);
End transaction
commit;

上述事务能保证只要支付宝账户里被扣了钱,消息一定能保存下来。

当上述事务提交成功后,我们通过实时消息服务将此消息通知余额宝,余额宝处理成功后发送回复成功消息,支付宝收到回复后删除该条消息数据。

  • 业务与消息解耦方式

上述保存消息的方式使得消息数据和业务数据紧耦合在一起,从架构上看不够优雅,而且容易诱发其他问题。为了解耦,可以采用以下方式。

1)支付宝在扣款事务提交之前,向实时消息服务请求发送消息,实时消息服务只记录消息数据,而不真正发送,只有消息发送成功后才会提交事务;

2)当支付宝扣款事务被提交成功后,向实时消息服务确认发送。只有在得到确认发送指令后,实时消息服务才真正发送该消息;

3)当支付宝扣款事务提交失败回滚后,向实时消息服务取消发送。在得到取消发送指令后,该消息将不会被发送;

4)对于那些未确认的消息或者取消的消息,需要有一个消息状态确认系统定时去支付宝系统查询这个消息的状态并进行更新。为什么需要这一步骤,举个例子:假设在第2步支付宝扣款事务被成功提交后,系统挂了,此时消息状态并未被更新为“确认发送”,从而导致消息不能被发送。

优点:消息数据独立存储,降低业务系统与消息系统间的耦合;

缺点:一次消息发送需要两次请求;业务处理服务需要实现消息状态回查接口。

这里写图片描述

如何解决消息重复投递的问题
还有一个很严重的问题就是消息重复投递,以我们支付宝转账到余额宝为例,如果相同的消息被重复投递两次,那么我们余额宝账户将会增加2万而不是1万了。这里面涉及到消费者接口的幂等性设计,简单来说,一个操作如果具有任意多次执行所产生的影响均与一次执行的影响相同,我们就称之为幂等。可见参考资料:https://mp.weixin.qq.com/s/EDkuMW5-hdIxs2GXMFnj_Q

为什么相同的消息会被重复投递?比如余额宝处理完消息msg后,发送了处理成功的消息给支付宝,正常情况下支付宝应该要删除消息msg,但如果支付宝这时候悲剧的挂了,重启后一看消息msg还在,就会继续发送消息msg。

解决方法很简单,在余额宝这边增加消息应用状态表(message_apply),通俗来说就是个账本,用于记录消息的消费情况,每次来一个消息,在真正执行之前,先去消息应用状态表中查询一遍,如果找到说明是重复消息,丢弃即可,如果没找到才执行,同时插入到消息应用状态表(同一事务)。

for each msg in queue
  Begin transaction
    select count(*) as cnt from message_apply where msg_id=msg.msg_id;
    if cnt==0 then
      update B set amount=amount+10000 where userId=1;
      insert into message_apply(msg_id) values(msg.msg_id);
  End transaction
  commit;

ebay的研发人员其实在2008年就提出了应用消息状态确认表来解决消息重复投递的问题:http://queue.acm.org/detail.cfm?id=1394128

CAP理论与相关算法

在理论计算机科学中,CAP定理(CAP theorem),又被称作布鲁尔定理(Brewer’s theorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点:

  • 一致性 (Consistency)(等同于所有节点访问同一份最新的数据副本)
  • 可用性(Availability)(对数据更新具备高可用性)
  • 网络分区容忍性(Partition tolerance)(以实际效果而言,数据存在的节点越多,分区容忍性越高)

详细理论可见参考文献四。

这里我们把一致性分为两类,强一致性(CP)和最终一致性(AP),为了实现强一致性会有很多算法,这其中Raft算法的使用范围也比较广泛。详细教程见:http://thesecretlivesofdata.com/raft/#home ;关于最终一致性也有不少算法,Gossip算法也是其中的使用度交广的一种,详细分析材料见:http://blog.csdn.net/chen77716/article/details/6275762

参考文献:
http://blog.jobbole.com/89140/
http://blog.csdn.net/dinglang_2009/article/details/51810151
https://mp.weixin.qq.com/s/EDkuMW5-hdIxs2GXMFnj_Q
https://zhuanlan.zhihu.com/p/20399316?columnSlug=auxten

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

如何参与KVM/QEMU社区开发

如何在开源社区开发KVM/QEMU

【OpenStack源码分析之一】初探OpenStack

打算开始写一个Openstack的分析系列,其实接触Openstack也比较久了,但是一直没有深入了解,而且因为本人对Python知之甚少,用之甚少,所以想研究Openstack的代码上手就会比较困难...

数据库中间件 MyCAT源码分析 —— XA分布式事务

数据库拆分后,业务上会碰到需要分布式事务的场景。MyCAT 基于 XA 实现分布式事务。国内目前另外一款很火的数据库中间件 Sharding-JDBC 准备基于 TCC 实现分布式事务。 本文内容分...

分布式事务与一致性算法Paxos & raft & zab

说明:以下内容总结自网络 1.CAP原理 要想数据高可用,就得写多份数据 写多分数据就会导致数据一致性问题 数据一致性问题会引起性能问题 2.一致性模型 弱一致...

轻松学会分布式事务算法

当我们在生产线上用一台服务器来提供数据服务的时候,我会遇到如下的两个问题:1)一台服务器的性能不足以提供足够的能力服务于所有的网络请求。2)我们总是害怕我们的这台服务器停机,造成服务不可用或是数据丢失...

微服务架构的分布式事务场景及解决方案分析

分布式系统架构中,分布式事务问题是一个绕不过去的挑战。而微服务架构的流行,让分布式事问题日益突出! 下面我们以电商购物支付流程中,在各大参与者系统中可能会遇到分布式事务问题的场景进行详细的分析!...

分布式事务理论原理与实践分析

分布式事务在许多涉及“利益”的重要业务领域有广泛使用需求的。比如,银行转账,淘宝订单,通讯业务创建等等。在理论的理想状态下,分布式事务就像牛顿力学一样精确:一次提交,多个点同时生效。例如,假设分布式系...
  • abcd302
  • abcd302
  • 2016年01月20日 23:28
  • 291

分析redis消息队列和kafka来解决分布式事务场景

跨系统间的分布式事务一致性个人的解决方案及分析redis原生消息队列和kafka消息队列...

关于分布式事务的整理

  • 2017年08月16日 20:12
  • 2.1MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【OpenStack源码分析之十一】分布式事务和相关算法
举报原因:
原因补充:

(最多只允许输入30个字)