poj 2480 Longge's problem

原创 2013年12月03日 10:36:50

               欧拉函数 或  积性函数应用。显然,我们设L = n / gcd(i, n) ,t = i /gcd(i, n)。则gcd(L, t) = 1;于是,gcd(i, n) 的个数为phi(L)。于是题目就可以用欧拉函数求解了。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#include<set>
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a))
#define REP(i, n) for(int i = 0; i < (n); i ++)
using namespace std;

const int N = 100100;
int phi[N];
bool isp[N];
vector<int> p;

void get_P()
{
    CLR(isp, true);p.clear();
    for(int i = 2; i < N; i ++)
    {
        if(isp[i])
        {
            p.push_back(i);
            if(i < 1111) for(int j = i * i; j < N; j += i)
            {
                isp[j] = false;
            }
        }
    }
}

LL Euler_phi(LL n)
{
    LL ret = n;
    for(int i = 0; (LL)p[i] * p[i] <= n; i ++) if(n % p[i] == 0)
    {
        ret = ret / p[i] * (p[i] - 1);
        while(n % p[i] == 0) n /= p[i];
    }
    if(n > 1) ret = ret / n * (n - 1);
    return ret;
}

void get_phi()
{
    for(int i = 2; i < N; i ++) phi[i] = 0;
    phi[1] = 1;
    for(int i = 2; i < N; i ++) if(!phi[i])
        for(int j = i; j < N; j += i)
        {
            if(!phi[j]) phi[j] = j;
            phi[j] = phi[j] / i * (i - 1);
        }
}

int main()
{
    LL ans, n;get_phi();get_P();
    while(scanf("%I64d", &n) != EOF)
    {
        ans = 0;
        for(int i = 1; (LL)i * i <= n; i ++)
        {
            if(n % i != 0) continue;
            ans += i * Euler_phi(n / i);
            if(i != n / i)
                ans += (n / i) * phi[i];
        }
        printf("%I64d\n", ans);
    }
}


            设f(n) = sum(gcd(i, n))。显然f(n) 是积性函数,于是我们可以对n进行质分解,n = p1^a1 * p2^a2 *...* pn^an;于是

f(n) = f(p1^a1) * f(p2^a2)*...*f(pn^an)。    对于f(pi^ai)就挺容易求了,最后可以求得f(pi^ai) = ai * (pi^ai - pi^(ai - 1)) + pi^ai;

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#include<set>
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a))
#define REP(i, n) for(int i = 0; i < (n); i ++)
using namespace std;

const int N = 111111;

vector<LL> hav, gx;
vector<int> cnt, p;
bool isp[N];

void get_P()
{
    isp[0] = isp[1] = 1;
    for(int i = 2; i < N; i ++)
    {
        if(!isp[i])
        {
            p.push_back(i);
            if(i <= 1111)for(int j = i * i; j < N; j += i) isp[j] = 1;
        }
    }
}

void get_hav(LL h)
{
    hav.clear();cnt.clear();gx.clear();
    for(int i = 0; (LL)p[i] * p[i] <= h; i ++)
    {
        if(h % p[i] == 0)
        {
            hav.push_back(p[i]);
            LL tmp = 1;int ct = 0;
            while(h % p[i] == 0)
            {
                h /= p[i];
                tmp *= p[i];
                ct ++;
            }
            gx.push_back(tmp);
            cnt.push_back(ct);
        }
    }
    if(h != 1)
    {
        hav.push_back(h);
        cnt.push_back(1);
        gx.push_back(h);
    }
}

int main()
{
    LL n, ans;get_P();
    while(scanf("%I64d", &n) != EOF)
    {
        ans = 1;get_hav(n);
        for(int i = 0; i < hav.size(); i ++)
        {
            ans *= cnt[i] * (gx[i] - gx[i] / hav[i]) + gx[i];
        }
        printf("%I64d\n", ans);
    }
}



版权声明:本文为博主原创文章,未经博主允许不得转载。转载请标注:blog.csdn.net/ok_again

相关文章推荐

POJ 2480 Longge's Problem

积性函数的性质,同时,PHI(n/d)为1到n中与n的公约数为d的个数

POJ 2480 Longge's problem (欧拉函数+乘性函数)

Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7343   Accepted:...

POJ 2480 Longge's problem 解题报告(欧拉函数 + 积性函数)

Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6914 ...
  • kbdwo
  • kbdwo
  • 2014年04月27日 08:58
  • 490

poj 2480 Longge's problem(积性函数 & 欧拉函数)

http://poj.org/problem?id=2480 大意:求解 ∑gcd(i, N) 1 对于最大公约数,它有这样的性质,gcd(n,m1*m2)=gcd(nm1)*gcd(n,m2)  ...

POJ2480 Longge's problem 欧拉函数应用

题目链接:POJ2480 题目大意:∑gcd(i, N) 1 代码,思路借鉴:大佬的思路 在数论中的积性函数:对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)...

POJ 2480 Longge's problem (欧拉函数)

Longge’s problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8107 Accepted...

poj 2480 Longge's problem(欧拉函数或积性函数)

poj 2480 Longge's problem

POJ 2048 Longge's problem (欧拉函数 积性函数)

POJ 2048 Longge's problem (欧拉函数 积性函数)

poj 2480 (欧拉函数应用)

点击打开链接 //求SUM(gcd(i,n), 1

因子和与因子个数的应用:poj 2992+poj 1845+hdu 1452+poj 2480

求解因子和与因子个数的本质是——素因子分解 poj 2992: Divisors 解题思路:把组合数写成阶乘的形式,以n!为例,小于等于n的prime都是素因子, 利用数论的知识:n!素因子分解...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 2480 Longge's problem
举报原因:
原因补充:

(最多只允许输入30个字)