整数的性质及其应用

原创 2007年10月15日 17:38:00

整数的性质及其应用(1)
 
 
 
 
 

  基础知识

整数的性质有很多,这里我们着重讨论整数的整除性、整数的奇偶性,质数与合数、完全平方数及整数的尾数等几个方面的应用。

1.整除的概念及其性质

在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。

  定义:设是给定的数,,若存在整数,使得则称整除,记作,并称的一个约数(因子),称的一个倍数,如果不存在上述,则称不能整除记作

由整除的定义,容易推出以下性质:

(1),则(传递性质)

(2),则即为某一整数倍数的整数之集关于加、减运算封闭。若反复运用这一性质,易知,则对于任意的整数。更一般,若都是的倍数,则。或着,则其中

(3),则或者,或者,因此若,则

(4)互质,若,则

(5)是质数,若,则能整除中的某一个;特别地,若是质数,若,则

(6)(带余除法)为整数,,则存在整数,使得,其中,并且由上述条件唯一确定;整数被称为除得的(不完全)商,数称为除得的余数。注意:共有种可能的取值:0,1,……,。若,即为整除的情形;

易知,带余除法中的商实际上为(不超过的最大整数),而带余除法的核心是关于余数的不等式:。证明的基本手法是将分解为与一个整数之积,在较为初级的问题中,这种数的分解常通过在一些代数式的分解中取特殊值而产生,下面两个分解式在这类论证中应用很多,见例1、例2

是正整数,则

是正奇数,则;(在上式中用

(7)如果在等式中取去某一项外,其余各项均为的倍数,则这一项也是的倍数;

(8)n个连续整数中,有且只有一个是n的倍数;

(9)任何n个连续的整数之积一定是n!的倍数,特别地,三个连续的正整数之积能被6整除;

2.奇数、偶数有如下性质

(1)奇数奇数=偶数,偶数偶数=偶数,奇数偶数=奇数,偶数偶数=偶数,奇数偶数=偶数,奇数奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差仍为奇数,偶数个奇数的和、差为偶数,奇数与偶数的和为奇数,和为偶数;

2)奇数的平方都可以表示成的形式,偶数的平方可以表示为的形式;

3)任何一个正整数,都可以写成的形式,其中为负整数,为奇数。

4)若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;偶数的平方根若是整数,它必为偶数。

  3.完全平方数及其性质

能表示为某整数的平方的数称为完全平方数,简称平方数。平方数有以下性质与结论:

1)平方数的个位数字只可能是0,14,56,9

2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是01

3)奇数平方的十位数字是偶数;

4)十位数字是奇数的平方数的个位数一定是6

5)不能被3整除的数的平方被3除余1,能被3整数的数的平方能被3整除。因而,平方数被9也合乎的余数为0,14,7,且此平方数的各位数字的和被9除的余数也只能是0,14,7

6)平方数的约数的个数为奇数;

7)任何四个连续整数的乘积加1,必定是一个平方数。

8)设正整数之积是一个正整数的次方幂(),若()=1,则都是整数的次方幂。一般地,设正整数之积是一个正整数的次方幂(),若两两互素,则都是正整数的k次方幂。

4.整数的尾数及其性质 

整数的个位数也称为整数的尾数,并记为也称为尾数函数,尾数函数具有以下性质:

1;(2

3;(4

5)若,则;(6

7

8

5.整数整除性的一些数码特征(即常见结论)

  (1)若一个整数的未位数字能被2(或5)整除,则这个数能被2(或5)整除,否则不能;

  (2)一个整数的数码之和能被3(或9)整除,则这个数能被3(或9)整除,否则不能;

  (3)若一个整数的未两位数字能被4(或25)整除,则这个数能被4(或25)整除,否则不能;

  (4)若一个整数的未三位数字能被8125)整除,则这个数能被8125)整除,否则不能;

  (5)若一个整数的奇位上的数码之和与偶位上的数码之和的差是11的倍数,则这个数能被11整除,否则不能。

6.质数与合数及其性质

1.正整数分为三类:(1)单位数1;(2)质数(素数):一个大于1的正整数,如果它的因数只有1和它本身,则称为质(素)数;(3)如果一个自然数包含有大于1而小于其本身的因子,则称这个自然数为合数。

2.有关质(素)数的一些性质

  (1)若,则的除1以外的最小正因数是一个质(素)数。如果,则

  (2)若是质(素)数,为任一整数,则必有或()=1

  (3)设个整数,为质(素)数,且,则必整除某个);

  (4)(算术基本定理)任何一个大于1的正整数,能唯一地表示成质(素)因数的乘积(不计较因数的排列顺序);

  (5)任何大于1的整数能唯一地写成       的形式,其中为质(素)数()。上式叫做整数的标准分解式;

  (6)若的标准分解式为的正因数的个数记为,则

典例分析

  例1.证明:1001整除。

  证明:

  所以整除

  例2.对正整数,记的十进制表示中数码之和。证明:的充要条件是

  证明:设(这里,且),则,于是有      

  对于,知,故式右端个加项中的每一个都是9的倍数,从而由整除的性质可知它们的和也能被9整除,即。由此可易推出结论的两个方面。

  例3.设是一个奇数,证明L对于任意正整数,数不能被整除。

  证明:时,结论显然成立。设,记所说的和为A,则:

  

  由k是正奇数,从而结于每一个,数整除,故除得余数为2,从而A不可能被整除(注意)。

  例4.设是正整数,,证明:()。

  证明:首先,当时,易知结论成立。事实上,时,结论平凡;当时,结果可由推出来(注意)。

  最后,的情形可化为上述特殊情形:由带余除法,由于,从而由若是正整数,则;而,故由上面证明了的结论知(注意时结论平凡),从而当时,也有()。这就证明了本题的结论。

  例5.设正整数满足,证明:不是质(素)数。

  证法一:由,可设其中。由意味着有理数的分子、分母约去了某个正整数后得既约分数,因此,        

  同理,存在正整数使得                   

  因此,是两个大于1的整数之积,从而不是素数。

  注:若正整数适合,则可分解为的形式,这一结果在某些问题的解决中很有作用。

  证法二:由,得,因此,因为是整数,故也是整数。

  若它是一个素数,设为,则由                  

  可见整除,从而素数整除。不妨设,则,结合推出,而这是不可能的(因为)。

  例6.求出有序整数对()的个数,其中是完全平方数。    (1999年美国数学邀请赛试题)

解:由于可得:

,于是

是完全平方数,则必有

然而,于是必有,即,此时。所以所求的有序整数对()共有98对:

7.证明:若正整数满足,则都是完全平方数。        (2006年山东省第二届夏令营试题)

  证法一:已知关系式即为

  )()=           

  若(或者说中有一个为0时),结论显然。

  不妨设,令,则

  从而,将其代入  

  因为,所以,从而

  而式又可写成

  因为,所以

  所以,从而

  所以,所以,从而为完全平方数。

  所以也是完全平方数。

  证法二:已知关系式即为

  )()=           

  论证的关键是证明正整数互素。

  记)。若,则有素因子,从而由。因为是素数,故,结合,从而由1,这是不可能的。故,从而由推知正整数都是完全平方数。

  例8.证明不存在正整数,使2n2+13n2+16n2+1都是完全平方数。

  证明:假设存在这样的正整数,使2n2+13n2+16n2+1都是完全平方数,那么

  (2n2+1)(3n2+1)(6n2+1)也必定是完全平方数。

  而(2n2+1)(3n2+1)(6n2+1)=36n6+36n4+11n2+1

  36n6+36n4+9n236n6+36n4+12n3+9n2+6n+1

  所以2n2+1)(3n2+1)(6n2+1)<与(2n2+1)(3n2+1)(6n2+1)为完全平方数矛盾。

  例9数列的通项公式为

  记,求所有的正整数,使得能被8整除.(2005年上海竞赛试题)

  解:记

  

  注意到  ,可得

      

   因此,Sn+2除以8的余数,完全由Sn+1Sn除以8的余数确定

   ,故由(*)式可以算出各项除以8的余数依次是1,30,57,01,3,……,它是一个以6为周期的数列,从而

  故当且仅当

  练习题

  1.证明:如果都是大于3的素数,则6的因子。

  证明:因为是奇数,所以2的因子。又因为除以3的余数各不相同,而都不能被3整数。于是6的因子。

  2.设,证明:

  解:由,故|()。

  又因为,从而,于是由整除的性质知

  

  3.证明:对于任意正整数,数 不能被整除。

  证明:只需证22)即可。

  因为若是正整数,则

  若是正奇数,则

  故,……,

  所以2)。

  又因为,所以 2,所以 2)+2

  即(2)命题得证。

  4.已知为正奇数,求证:

  证明:因为若是正整数,则

是正奇数,则

  所以,从而

    ,从而

    ,从而

,所以

  5abc为满足不等式1abc的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(abc.1989年上海竞赛试题)

  解  ∵ab-1)(bc-1)(ca-1

  =a2b2c2-abca+b+c+ab+ac+bc-1

  ∵abc|ab-1)(bc-1)(ca-1.

  ∴存在正整数k,使ab+ac+bc-1=kabc,     ②

  k=  ∴k=1.

  若a≥3,此时1=-矛盾.

  已知a1.   ∴只有a=2.

  当a=2时,代入中得2b+2c-1=bc,即   1=

  ∴0b4,知b=3,从而易得c=5.

  说明:在此例中通过对因数k的范围讨论,从而逐步确定abc是一项重要解题技巧.

论马克思主义物质观及其现代意义

科    目:马克思主义基本原理概论 论文题目:论马克思主义物质观及其现代意义 指导教师:**** 系别:**** 班级:**** 姓名:**** 学号:**** 联...
  • xuan_xinya
  • xuan_xinya
  • 2013年03月23日 20:08
  • 3129

【字符串数据结构后缀系列Part3】后缀自动机的性质和应用

学会了构建SAM之后,我们要开始学如何使用SAM来处理各种问题了. 我们先来整体看一下SAM的性质(引自2015国家集训队论文集张天扬《后缀自动机及其应用》): 1.每个状态s代表的串的长度是区...
  • CreationAugust
  • CreationAugust
  • 2015年07月24日 16:51
  • 2424

3. 定义一个分数类(Fraction) 实例变量:分子,分母 方法:初始化方法(2个参数),便利构造器,约分,打印,加,减,乘,除。

3. 定义一个分数类(Fraction) 实例变量:分子,分母 方法:初始化方法(2个参数),便利构造器,约分,打印,加,减,乘,除。 ...
  • qq_22157341
  • qq_22157341
  • 2015年10月06日 10:49
  • 1496

C++第四周【任务3】设计一个“正整数”类,并通过一系列的成员函数对其性质进行做出判断或列出相关联的数值。

/* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生 * All rights reserved. * 文件名称: ...
  • lihongxuanli
  • lihongxuanli
  • 2012年03月14日 17:27
  • 1065

整数趣题(求具有abcd = (ab + cd)^2性质的四位数)

/**************************************** * File Name : integer.c * Creat Data : 2015.1.24 * A...
  • qaz3171210
  • qaz3171210
  • 2015年01月24日 23:46
  • 1005

第四周上机任务--任务三--设计一个“正整数”类,并通过一系列的成员函数对其性质进行做出判断(VS2008)

/* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生 * All rights reserved. * 文件名称:设计一...
  • leihengxin
  • leihengxin
  • 2012年03月13日 08:59
  • 983

nyoj-755-整数性质

整数性质 时间限制:500 ms  |  内存限制:65535 KB 难度:1 描述 我们知道,在数学中,对于任意两个正整数a和b,必定存在一对整数s、t使得sa+tb...
  • u011514451
  • u011514451
  • 2015年04月07日 11:20
  • 305

整数性质

链接:http://115.159.40.116/problem_show.php?pid=5344; /*对于输入的 n,k;  第一行: 将n划分成若干正整数之和的划分数。  第...
  • menxiaoyuan
  • menxiaoyuan
  • 2016年05月04日 16:35
  • 185

矩阵初等变换的一些性质及应用

  • 2015年06月10日 19:15
  • 25KB
  • 下载

圆锥曲线的性质及其应用

  • 2011年05月03日 13:00
  • 740KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:整数的性质及其应用
举报原因:
原因补充:

(最多只允许输入30个字)