POJ 1061 青蛙的约定

最近听到百纳的那个不知道什么先生的演讲,内心甚是汹涌澎湃。人家一个非计算机专业都可以用三个月的时间看完XX本书,所以相信虽然留给我的时间不多了,同样可以做的不错。。。

所以最近就开始强化自己的基础知识。

下面是我的第一道OJ题(除了老师要求的)

我首先选的这道是因为,这是一道中文题,而且看起来简单一些,结果这个题就搞了我好长时间。

                                                        POJ    1061         青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

拿到这道题,不到10分钟就写出了代码,而且自信满满的提交了上去。(后来又花了4,5个小时来改正)

我拿到这道题时的思路是:

两只青蛙不相遇的情况就是他们的速度相同时,这样的情况是永远不可能相遇的。(这是错误的认识,下面会解释)

如果速度不同时,只要他们在t时间后能够在同一位置就可以了,我的任务就是算出最小的正整数t。

下面是最初的实现代码:

int main()
{

	__int64 x,y,m,n,l;
	__int64 count = 0;
   while(cin>>x>>y>>m>>n>>l)
   {
	count = 0 ;
	if(m == n)
		cout<<"Impossible"<<endl;
    while(true)
	{
       if((x+m*count)%l==(y+n*count)%l)
	   {
		   printf("%I64d",count);
	       break;
	   }
       else count++;
	}
   }
     return 0;
}


上面的代码提交后,就出现了Wrong answer和time exceed的错误(提交了好多次)
然后去看了一些博客提到的都是欧几里得扩展法,离散数学学的太渣,所以要自己要结合博客慢慢找错。
首先我想到的是会不会是我少考虑了什么情况,比如在速度不等的时候也会出现Impossible的情况,这样就会导致
Wrong answer和time exceed的错误。
下面就是我的认识:
要让两者相遇 必须有   (x+m*count)%l  == (y + n*count)%l 的等式成立,这个等式是与l*n +(n-m)*count = x - y等价。
我们需要求解的是count的最小值。把上面的式子换个位置(n-m)*count + l*n = x-y。我们需要求得就是count的最小的正数。
在求解的过程中,我一直尝试不用网上他们所用的所有都一致的解法,但是一次次碰壁,最后他们的确实是最好的办法。
设  a = n-m      b = l   c = x- y   count = x    n = y
上面的式子就变成了    a*x + b*y = c 方程求解最小正整数解的问题。(正好验证了上面的考虑少了的猜想)
根据数论的知识,当c%gcd(a,b)  ==  0时方程才有解,gcd(a,b)为a,b的最大公约数
看到这点,我又兴奋了,抓紧把Impossible判别部分改成了:
              if((x-y)%gcd(a,b))
cout<<"Impossible"<<endl;
满心欢喜的提交了结果,结果换来的是超时。
好头疼啊。。但是自己又不甘心,又在边看博客,边思考自己到底是什么地方出了问题
现在的问题只有是在while(true)这个循环体里面了,当数字很大是需要的循环次数过多
不会只好继续求助博客。。
结果又看到了下面的三条性质:
  定理一:如果d = gcd(a, b),则必能找到正的或负的整数k和l,使d = a*x+ b*y。


  定理二:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。


  定理三:若gcd(a, b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。
看到定理三,我又有想法了,我可以把while(true)的判断true改为count<b/d-1
提交之后结果又是超时,好忧伤,我只能按照博客上的欧几里得扩展法去做了,我的算法虽然是没问题的(我觉得没问题,如果有问题欢迎指正),但是时间上挺耗时。
欧几里得扩展法的具体内容是用来求解a*x + b*y = gcd(a,b)这个方程的,是对欧几里得算法的扩展,就是求解两个数的最大公约数。(我之前没听过这个算法,知识太贫乏)

__int64 gcd(__int64 a,__int64 b)

{

    if(b == 0) return a;

    else return gcd(b,a%b) ;

}

__int64 gcd_ext(__int64 a,__int64 b,__int 64 &x,__int64 &y)//欧几里得扩展

{

      if(b == 0)

   {

      x = 1;

      y = 0;

     return a;

   }

     __int64 r = gcd_ext(b,a%b,x,y);

     __int64 temp = x;

     y = x;

     x = temp - a/b*y;

return r;

}

过程类似欧几里得法。

最后需要注意的是欧几里得算法得到的解释

a*x+b*y = gcd(a,b)的解

所以要求一般情况需要变换 ,即x = X*c/gcd(a,b);

按照这种方法做,果然过了,但自己不是很激动。下面是完整的实现:

__int64 gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)//a*x + b*y  = c
{

	if(b==0)
	{
		x = 1;
		y = 0;
		return a;
	}
	__int64 r = gcd(b,a%b,x,y);
	__int64 temp = x;
	x = y;
	y = temp - a/b*y;
	return r ; 
}
int _tmain(int argc, _TCHAR* argv[])
{
	__int64 x,y,m,n,l;
	__int64 count = 0;
	__int64 d = 0;
	__int64 result_x = 0;
	__int64 result_y = 0;
	while(cin>>x>>y>>m>>n>>l)
	{
	count = 0 ;
	result_x = 0;
	result_y = 0;
	d = gcd(n-m,l,result_x,result_y);
	__int64 r = l/d;
	if((x-y)%d)
	{
		cout<<"Impossible";
		continue;
	}
	cout << ((x - y) / d * result_x % r + r) % r << endl;
	}
	return 0;
}



总结:

这道也算是我做OJ题的第一题,也算折腾了我不少。

下面是这次发现的一些不太熟悉的知识点。

OJ里面经常会出现一些数据比较大的,int无法完成任务。所以就会需要__int64,long long来解决。(__int64在vc 6.0无法使用<<操作符输入)

32 位系统 int           范围[-2^31 , 2^31 -1] 即 [-2147483648,2147483647]。

__int64                         -2^63 ( -9,223,372,036,854,775,808) 到2^63-1(+9,223,372,036,854,775,807 )






  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值