关闭

求n!末尾0的个数

724人阅读 评论(0) 收藏 举报

思考: 该题实际上是求(2 5)因子对的个数。对于任意一个阶乘,5因子的个数总是小于2因子的个数,仅需考虑n!中5因子的个数

方法:  
 (1) 将该数用 5 除, 得到的商取整数。  
 (2) 然后再用所得商当被除数除以 5,得到的商取整数。  
 (3) 持续做到商等于 0 为止。  
 (4) 过程中的商加总即为阶乘的尾数 0 的个数。  
 
 例: 1234! 的尾数 0 的个数计算如下: 代码:
   1234/5  = 246
   246/5  = 49
   49/5  = 9
   9/5  = 1
   1/5  = 0  
 ------ ---------- 305

原理:
 行(1)得到的是1~~~n中因子含5的数的个数
 行(2)得到的是1~~~n中因子含25的数的个数
   .
   .
 行(n)得到的是1~~~n中因子含5^n的数的个数

 将这些数进行累计就得到了5因子的个数,也就是末尾0的个数。

Attachment :my code

#include <stdio.h>

int main()
{
 int i, n;

 scanf("%d", &n);
 for(i=0; i<n; i++)
 {
  int temp;
  int cnt = 0;
  
  scanf("%d", &temp);
  while(temp != 0)
   cnt += (temp = temp/5);
  
  printf("%d/n", cnt);
 }
}


 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2946214次
    • 积分:30942
    • 等级:
    • 排名:第164名
    • 原创:590篇
    • 转载:983篇
    • 译文:4篇
    • 评论:385条
    文章分类
    最新评论