51NOD算法马拉松21(迎新年) A - 1737 配对(dfs树的重心)

原创 2017年01月03日 14:49:39

记录一个菜逼的成长。。

题目链接
1737 配对
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
给出一棵n个点的树,将这n个点两两配对,求所有可行的方案中配对两点间的距离的总和最大为多少。
Input

一个数n(1<=n<=100,000,n保证为偶数)
接下来n-1行每行三个数x,y,z表示有一条长度为z的边连接x和y(0<=z<=1,000,000,000)

Output

一个数表示答案

Input示例

6
1 2 1
1 3 1
1 4 1
3 5 1
4 6 1

Output示例

7
//配对方案为(1,2)(3,4)(5,6)

官方题解:
考虑每一条边被统计进答案几次。
若断开这条边后树形成大小为s1、s2的两个联通块则这条边最多被统计min(s1,s2)次。
构造方案的做法为:找出树的重心,让所有n/2条路径都经过重心即可(只要保证删去重心后任意同一联通块中的两点不构成路径即可,因为是重心,所以这是很好构造的)
这样构造出来的配对方案满足了每条边都没被统计min(s1,s2)次,所以这道题只要求出断开每条边后两个联通块的大小即可。
时间复杂度O(n)

简单的说,就是先求出树的重心,其余点到重心的带权路径长度和就是答案。
两次dfs。
一次求重心,一次求带权路径长度和。
这里有几个数组:
son[i] := 表示以i为根的子树的节点数,不包括自身。
dd[i] := 表示i到重心的带权路径长度。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cmath>
using namespace std;
#define cl(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define mp make_pair
#define lowbit(x) (x)&(-x)
typedef long long LL;
typedef pair<int,int> PII;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int maxn = 100000 + 10;
int son[maxn],vis[maxn];
LL dd[maxn];
int zx,Size;
vector<PII>edge[maxn];
int n;
void init()
{
    for( int i = 1; i <= n; i++ )edge[i].clear();
    cl(vis,0);
    cl(dd,0);
    Size = INF;
    zx = -1;
}
//求树的重心模板
void dfs(int r)
{
    vis[r] = 1;
    son[r] = 0;
    int tmp = 0;
    for( int i = 0; i < edge[r].size(); i++ ){
        int v = edge[r][i].second;
        if(!vis[v]){
            dfs(v);
            son[r] +=  son[v] + 1;
            tmp = max(tmp,son[v] + 1);
        }
    }
    tmp = max(tmp,n - son[r] - 1);
    if(tmp < Size){
        zx = r;
        Size = tmp;
    }
}
void dfs1(int x)
{
    vis[x] = 1;
    for( int i = 0; i < edge[x].size(); i++ ){
        int v = edge[x][i].second;
        if(!vis[v]){
            dd[v] = dd[x] + edge[x][i].first;
            dfs1(v);
        }
    }
}
int main()
{
    while(~scanf("%d",&n)){
        init();
        for( int i = 0; i < n - 1; i++ ){
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            edge[u].pb(mp(w,v));
            edge[v].pb(mp(w,u));
        }
        dfs(1);
        cl(vis,0);
        dfs1(zx);
        LL ans = 0;
        for( int i = 1; i <= n; i++ ){
            ans += dd[i];
        }
        printf("%lld\n",ans);
    }
    return 0;
}

版权声明:本文为博主原创文章,如有建议与错误请指出!本弱感激不尽!

相关文章推荐

51nod 1737 配对 树的重心

传送门:51nod1737 题意:中文题。 思路:画图可以得知对于每一条边,它对答案的贡献一定不超过它两端子树的大小的较小值,并且使答案最大的每条路径都应该是经过重心的,因此题目可以转化为求所有点...

51nod 1737 配对 乱搞

题意给出一棵n个点的树,将这n个点两两配对,求所有可行的方案中配对两点间的距离的总和最大为多少。(1<=n<=100,000,n保证为偶数)分析答案即为∑val[i]∗min(size[x],size...

51nod 1737 配对 【树形dp】

题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1737题意:给出一棵n个点的树,将这n个点两两配对,求所有可行的方案...

51nod 1737【树的重心】

思路: 树的重心也叫树的质心。 找到一个点,其所有的子树中最大的子树节点数最少,那么这个点就是这棵树的重心,删去重心后, 生成的多棵树尽可能平衡。 考虑每一条边被统计进答案几次,若断开这条边后...

51nod-1737 配对

原题连接 1737 配对 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给出一棵...

51Nod 1737 配对

这种贡献在边上的题的套路就是按边考虑。对于一条边,它的贡献一定不超过它两端子树的大小的较小值。开一个脑洞就会发现我们确实可以构造出这样一个方案。以重心为根,使每一条路径都经过重心即可。由于每一个子树的...

51Nod-1737-配对

ACM模版描述题解这个问题实际上是找树的重心,只要找到重心 dfs 遍历一遍求各个路径的权值,各点到重心的权值之和就是最大距离总和。至于怎么找重心,其实也是一遍 dfs,有固定的模版,代码不难理解。说...
  • f_zyj
  • f_zyj
  • 2017-03-13 13:39
  • 205

51nod 1737 配对【树的重心】

1737 配对 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给出一棵n个点的树,将这n个点两两配对,求所有可行的方案中配对两...

51nod 1737 配对 && Codeforces 700B Connecting Universities【树的重心】

51nod 1737 配对 && Codeforces 700B Connecting Universities【树的重心】 给出一棵n个点的树,将这n个点两两配对,求所有可行的方案中配对两点间的距离...

【51nod 1737 配对】+ 链式前向星 + dfs + 输入外挂

1737 配对 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 给出一棵n个点的树,将这n个点两两配对,求所有可行的方案中配对两点间的距离的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)