关闭

51NOD算法马拉松21(迎新年) A - 1737 配对(dfs树的重心)

标签: dfs算法树的重心
319人阅读 评论(0) 收藏 举报
分类:

记录一个菜逼的成长。。

题目链接
1737 配对
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
给出一棵n个点的树,将这n个点两两配对,求所有可行的方案中配对两点间的距离的总和最大为多少。
Input

一个数n(1<=n<=100,000,n保证为偶数)
接下来n-1行每行三个数x,y,z表示有一条长度为z的边连接x和y(0<=z<=1,000,000,000)

Output

一个数表示答案

Input示例

6
1 2 1
1 3 1
1 4 1
3 5 1
4 6 1

Output示例

7
//配对方案为(1,2)(3,4)(5,6)

官方题解:
考虑每一条边被统计进答案几次。
若断开这条边后树形成大小为s1、s2的两个联通块则这条边最多被统计min(s1,s2)次。
构造方案的做法为:找出树的重心,让所有n/2条路径都经过重心即可(只要保证删去重心后任意同一联通块中的两点不构成路径即可,因为是重心,所以这是很好构造的)
这样构造出来的配对方案满足了每条边都没被统计min(s1,s2)次,所以这道题只要求出断开每条边后两个联通块的大小即可。
时间复杂度O(n)

简单的说,就是先求出树的重心,其余点到重心的带权路径长度和就是答案。
两次dfs。
一次求重心,一次求带权路径长度和。
这里有几个数组:
son[i] := 表示以i为根的子树的节点数,不包括自身。
dd[i] := 表示i到重心的带权路径长度。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cmath>
using namespace std;
#define cl(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define mp make_pair
#define lowbit(x) (x)&(-x)
typedef long long LL;
typedef pair<int,int> PII;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int maxn = 100000 + 10;
int son[maxn],vis[maxn];
LL dd[maxn];
int zx,Size;
vector<PII>edge[maxn];
int n;
void init()
{
    for( int i = 1; i <= n; i++ )edge[i].clear();
    cl(vis,0);
    cl(dd,0);
    Size = INF;
    zx = -1;
}
//求树的重心模板
void dfs(int r)
{
    vis[r] = 1;
    son[r] = 0;
    int tmp = 0;
    for( int i = 0; i < edge[r].size(); i++ ){
        int v = edge[r][i].second;
        if(!vis[v]){
            dfs(v);
            son[r] +=  son[v] + 1;
            tmp = max(tmp,son[v] + 1);
        }
    }
    tmp = max(tmp,n - son[r] - 1);
    if(tmp < Size){
        zx = r;
        Size = tmp;
    }
}
void dfs1(int x)
{
    vis[x] = 1;
    for( int i = 0; i < edge[x].size(); i++ ){
        int v = edge[x][i].second;
        if(!vis[v]){
            dd[v] = dd[x] + edge[x][i].first;
            dfs1(v);
        }
    }
}
int main()
{
    while(~scanf("%d",&n)){
        init();
        for( int i = 0; i < n - 1; i++ ){
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            edge[u].pb(mp(w,v));
            edge[v].pb(mp(w,u));
        }
        dfs(1);
        cl(vis,0);
        dfs1(zx);
        LL ans = 0;
        for( int i = 1; i <= n; i++ ){
            ans += dd[i];
        }
        printf("%lld\n",ans);
    }
    return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:20578次
    • 积分:2163
    • 等级:
    • 排名:第17616名
    • 原创:206篇
    • 转载:4篇
    • 译文:0篇
    • 评论:5条
    最新评论