关于csv数据如何导入mongo的historicialQuotes的命令导入方式

原创 2015年07月10日 12:00:29

这边提供了两种方式导入这批数据:

第一种,导入批量csv数据到Mongo的historicalQuotes数据表里

1.先删除historicialQuotes的原始数据,可以通过下面的MongoVUE界面里的remove all来实现。


2. 准备好csv文件格式:



3.执行mongoimport文件到mongo数据:


mongoimport -d fcmarketdata -c HistoricalQuotes -type csv -fields TradeDate,OpenPrice,HighPrice,LowPrice,ClosePrice,MatchQuantity,StockCode -file d:\mongodb\data\510050.csv -headerline


这个命令式mongodb\bin里的外部命令

4.进入mongo数据库,切换到fcmarketdata数据库执行下面的改变tradedate和stockcode字段的类型命令


db.HistoricalQuotes.find({'StockCode':510050}).forEach(function(x){
     x.StockCode=x.StockCode+"";
     db.HistoricalQuotes.save(x);
});
db.HistoricalQuotes.find({'StockCode':"510050"}).forEach(function(x){
     x.TradeDate=new Date(x.TradeDate);
     db.HistoricalQuotes.save(x);
});


第二种是直接删除后进行单条插入,这个也是客户要求:


删除时间段里的数据

 db.HistoricalQuotes.remove({"TradeDate":{"$gt":  ISODate("2015-07-08T08:13:49.98Z")}})

插入数据
 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-06-23T16:00:00Z"),   "OpenPrice" : 2.89,   "HighPrice" : 2.99,   "LowPrice" : 2.8,   "ClosePrice" : 2.98,   "MatchQuantity" : NumberLong(2573711425),   "StockCode" : "510050"})





 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-06-24T16:00:00Z"),   "OpenPrice" : 2.99,   "HighPrice" : 3.03,   "LowPrice" : 2.92,   "ClosePrice" : 3.02,   "MatchQuantity" : NumberLong(2269673751),   "StockCode" : "510050"})






 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-06-25T16:00:00Z"),   "OpenPrice" : 3.05,   "HighPrice" : 3.06,   "LowPrice" : 2.91,   "ClosePrice" :2.92,   "MatchQuantity" : NumberLong(2239861306),   "StockCode" : "510050"})




 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-06-26T16:00:00Z"),   "OpenPrice" : 2.86,   "HighPrice" : 2.93,   "LowPrice" : 2.63,   "ClosePrice" : 2.69,   "MatchQuantity" : NumberLong(4091997209),   "StockCode" : "510050"})





 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-06-29T16:00:00Z"),   "OpenPrice" : 2.77,   "HighPrice" : 2.8,   "LowPrice" : 2.48,   "ClosePrice" : 2.66,   "MatchQuantity" : NumberLong(7737937085),   "StockCode" : "510050"})





 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-06-30T16:00:00Z"),   "OpenPrice" : 2.66,   "HighPrice" : 2.86,   "LowPrice" : 2.6,   "ClosePrice" : 2.85,   "MatchQuantity" : NumberLong(6802366362),   "StockCode" : "510050"})





 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-07-01T16:00:00Z"),   "OpenPrice" : 2.81,   "HighPrice" : 2.85,   "LowPrice" : 2.69,   "ClosePrice" : 2.73,   "MatchQuantity" : NumberLong(4433403139),   "StockCode" : "510050"})




 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-07-02T16:00:00Z"),   "OpenPrice" : 2.79,   "HighPrice" : 2.79,   "LowPrice" : 2.58,   "ClosePrice" : 2.68,   "MatchQuantity" : NumberLong(5865295181),   "StockCode" : "510050"})




 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-07-03T16:00:00Z"),   "OpenPrice" : 2.66,   "HighPrice" : 2.73,   "LowPrice" : 2.5,   "ClosePrice" : 2.58,   "MatchQuantity" : NumberLong(4464872090),   "StockCode" : "510050"})





 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-07-06T16:00:00Z"),   "OpenPrice" : 2.84,   "HighPrice" : 2.84,   "LowPrice" : 2.63,   "ClosePrice" : 2.74,   "MatchQuantity" : NumberLong(9146831430),   "StockCode" : "510050"})




 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-07-07T16:00:00Z"),   "OpenPrice" : 2.68,   "HighPrice" : 2.82,   "LowPrice" : 2.61,   "ClosePrice" : 2.79,   "MatchQuantity" : NumberLong(6650103182),   "StockCode" : "510050"})


 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-07-08T16:00:00Z"),   "OpenPrice" : 2.6,   "HighPrice" : 2.76,   "LowPrice" : 2.51,   "ClosePrice" : 2.6,   "MatchQuantity" : NumberLong(7054986215),   "StockCode" : "510050"})



 db.HistoricalQuotes.insert({"TradeDate" : ISODate("2015-07-09T16:00:00Z"),   "OpenPrice" : 2.53,   "HighPrice" : 2.86,   "LowPrice" : 2.48,   "ClosePrice" : 2.79,   "MatchQuantity" : NumberLong(3893441316),   "StockCode" : "510050"})



使用csv文件批量导入数据

  • 2014年10月09日 15:50
  • 3.17MB
  • 下载

mongo的数据导入导出

项目整理 mongo远程导入导出数据(http://www.jb51.net/article/52498.htm) 一: 导出所有数据库 格式: mongodump -h IP --port 端口 -...

Oracle导入CSV格式数据

  • 2014年05月13日 09:54
  • 145KB
  • 下载

mongo shell 之 数据导出&导入&备份&恢复

mongodb 在进行数据导入导出,备份 1. 数据导出 mongoexport    1. 命令选项:       -h 服务器ip地址         -p 服务器端口号       -u ...

mongo-connector导入数据到Elasticsearch

mongo-connector同步数据到Elasticsearch

csv批量导入mysql命令

今天把从Kaggle上下载下来的csv数据导入mysql,想做个统计分析,怎奈csv文件有些大,所以只能用mysql 命令导入,现mark下,以备以后不时之需:1. 导入:基本语法: load dat...
  • glDemo
  • glDemo
  • 2015年07月15日 00:48
  • 5516

csv批量导入mysql命令

今天把从Kaggle上下载下来的csv数据导入mysql,想做个统计分析,怎奈csv文件有些大,所以只能用mysql 命令导入,现mark下,以备以后不时之需: 1. 导入: 基本语法: lo...

HIVE的安装配置、mysql的安装、hive创建表、创建分区、修改表等内容、hive beeline使用、HIVE的四种数据导入方式、使用Java代码执行hive的sql命令

1.上传tar包 这里上传的是apache-hive-1.2.1-bin.tar.gz 2.解压         mkdir -p /home/tuzq/software/hive/...

8.mongo命令行中的数据类型

8.mongo命令行中的数据类型最新内容会在源站更新.转载请保留原文链接: http://dashidan.com/article/mongodb/basic/mongo命令行中的数据类型.htmlM...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:关于csv数据如何导入mongo的historicialQuotes的命令导入方式
举报原因:
原因补充:

(最多只允许输入30个字)