推荐系统比较好的论

转载 2015年11月20日 10:09:54

链接:http://www.zhihu.com/question/25566638/answer/37455091
来源:知乎

推荐几篇对工业界比较有影响的论文吧:

1. The Wisdom of The Few 豆瓣阿稳在介绍豆瓣猜的时候极力推荐过这篇论文,豆瓣猜也充分应用了这篇论文中提出的算法;
2. Restricted Boltzmann Machines for Collaborative Filtering 目前Netflix使用的主要推荐算法之一;
3. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model 这个无需强调重要性,LFM几乎应用到了每一个商业推荐系统中;
4. Collaborative Filtering with Temporal Dynamics 加入时间因素的SVD++模型,曾在Netflix Prize中大放溢彩的算法模型;
5. Context-Aware Recommender Systems 基于上下文的推荐模型,现在不论是工业界还是学术界都非常火的一个topic;
6. Toward the next generation of recommender systems 对下一代推荐系统的一个综述;
7. Item-Based Collaborative Filtering Recommendation Algorithms 基于物品的协同过滤,Amazon等电商网站的主力模型算法之一;
8. Information Seeking-Convergence of Search, Recommendations and Advertising 搜索、推荐和广告的大融合也是未来推荐系统的发展趋势之一;
9. Ad Click Prediction: a View from the Trenches 可以对推荐结果做CTR预测排序;
10. Performance of Recommender Algorithm on top-n Recommendation Task TopN预测的一个综合评测,TopN现在是推荐系统的主流话题,可以全部实现这篇文章中提到的算法大概对TopN有个体会;
11. dsec.pku.edu.cn/~jinlon 北大一博士对Netflix Prize算法的研究做的毕业论文,这篇论文本身对业界影响不大,但是Netflix Prize中运用到的算法极大地推动了推荐系统的发展;
通过这些论文可以对推荐系统有个总体上的全面认识,并且能够了解一些推荐系统的发展趋势。剩下的就是多实践了。Good luck!

推荐系统应用-电影类,写的比较好

假设MovieRecommendation.com是一个为互联网用户提供电影推荐的网站(下面成为MR),这个网站只提供电影的链接而不提供电影的内容展示。(这个是和hulu,土豆等一些视频网站不同的地方...

推荐比较好用的DBMS 可视化数据库系统管理工具

刚开始学习编程的时候,用的是web的phpmyadmin,当好似决定这种图形化的很好,毕竟是用windows用习惯了,像那种命令行的用到还是不习惯,题外话,后来呢发现phpmyadmin特别的慢,毕竟...
  • MrWangc
  • MrWangc
  • 2017年01月23日 10:24
  • 576

推荐系统user-based和item-based协同过滤算法定性比较

两种协同过滤推荐算法的比较

推荐系统不同算法之间的比较

基于内容的推荐和协同过滤的优缺点

音乐推荐系统比较调研

音乐推荐系统比较调研

互联网推荐系统比较研究

互联网规模和覆盖面的迅速增长带来了信息超载(information overload)的问题:过量信息同时呈现使得用户无法从中获取对自己有用的部分,信息使用效率反而降低。现有的很多网络应用,比如门户网...

推荐系统:基于用户和基于物品的协同过滤算法的比较

首先回顾一下,协同过滤算法主要有两种,一种是基于用户的协同过滤算法(UserCF),另一种是基于物品的协同过滤算法(ItemCF)。 基于用户的协同过滤算法主要有两步: 1)找到和目标用户...

LFM和基于邻域(如UserCF、ItemCF)的方法的比较( 推荐系统)

LFM是一种基于机器学习的方法,具有比较好的理论基础。这个方法和基于邻域的方法(比如UserCF、ItemCF)相比,各有优缺点。下面将从不同的方面对比LFM和基于邻域的方法。        理...

推荐系统系列---基于movielens数据集的KNN算法与矩阵分解算法比较

理论部分 1. 隐因子模型的推荐算法:使用奇异值分解或者随机梯度下降等方法将用户的评分矩阵分解为用户和产品的特征矩阵 ; 2. 提出一种对推荐效果新的评估方法: 3.Movielens 数据集: (...

推荐系统_LFM和基于邻域(如UserCF、ItemCF)的方法的比较

LFM是一种基于机器学习的方法,具有比较好的理论基础。这个方法和基于邻域的方法(比如UserCF、ItemCF)相比,各有优缺点。下面将从不同的方面对比LFM和基于邻域的方法。        理论基...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:推荐系统比较好的论
举报原因:
原因补充:

(最多只允许输入30个字)