UVA 10820 Send a Table [欧拉函数] [线性筛法]

原创 2016年07月24日 17:41:14

Send a Table
Time Limit: 3000MS
Memory Limit: Unknown
64bit IO Format: %lld & %llu

When participating in programming contests, you sometimes face the following problem: You know
how to calcutale the output for the given input values, but your algorithm is way too slow to ever
pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that
would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half
an hour and produce a table of answers for all possible input values, encode this table into a program,
submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,
but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.
But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program
small enough to pass the judge. The situation looked hopeless, until he discovered the following property
regarding the answers: the answers where calculated from two integers, but whenever the two
input values had a common factor, the answer could be easily derived from the answer for which the
input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range
[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer
from it by applying some simple calculations involving Answer(x, y) and k.
For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value
combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),
Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived
from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from
Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,
so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the
number of function Jimmy has to pre-calculate.

Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which
indicates the value of N. Input is terminated by a line which contains a zero. This line should not be
processed.

Output
For each line of input produce one line of output. This line contains an integer which indicates how
many values Jimmy has to pre-calculate for a certain value of N.

Sample Input
2
5
0

Sample Output
3
19


求范围内 x , y 互质的个数 ANS = 2*f(n) + 1
x == y 时 也算一种情况

O(nloglogn) Eratosthenes筛法

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<iomanip>
#include<ctime>
#include<climits>
#include<cctype>
#include<algorithm>
#ifdef WIN32
#define AUTO "%I64d"
#else
#define AUTO "%lld"
#endif
using namespace std;
#define smax(x,tmp) x=max((x),(tmp))
#define smin(x,tmp) x=min((x),(tmp))
#define maxx(x1,x2,x3) max(max(x1,x2),x3)
#define minn(x1,x2,x3) min(min(x1,x2),x3)
const int INF=0x3f3f3f3f;
const int maxn = 50000;
int phi[maxn + 5];
int sum[maxn + 5];
void build_phi()
{
    phi[1] = 1;
    for(int i=2;i<=maxn;i++) if(!phi[i])
        for(int j=i;j<=maxn;j+=i)
        {
            if(!phi[j]) phi[j] = j;
            phi[j] = phi[j] / i * (i-1);
        }
    for(int i=1;i<=maxn;i++) sum[i] = sum[i-1] + phi[i];
}
int main()
{
    freopen("table.in","r",stdin);
    freopen("table.out","w",stdout);
    build_phi();
    int n;
    while(~scanf("%d",&n) && n)
    {
        int ans = sum[n] - sum[1];
        ans = ans<<1|1;
        printf("%d\n",ans);
    }
    return 0;
}

O(n) 欧拉筛法 , 每个合数只会计算一次 不存在多次访问

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<iomanip>
#include<ctime>
#include<climits>
#include<cctype>
#include<algorithm>
#ifdef WIN32
#define AUTO "%I64d"
#else
#define AUTO "%lld"
#endif
using namespace std;
#define smax(x,tmp) x=max((x),(tmp))
#define smin(x,tmp) x=min((x),(tmp))
#define maxx(x1,x2,x3) max(max(x1,x2),x3)
#define minn(x1,x2,x3) min(min(x1,x2),x3)
const int INF=0x3f3f3f3f;
const int maxn = 50000;
bool no[maxn];
int prime[maxn>>3]; // n / ln(n)
int prime_cnt;
int phi[maxn + 5];
int sum[maxn + 5];
void build_phi()
{
    phi[1] = 1;
    prime_cnt = 0;
    for(int i=2;i<=maxn;i++)
    {
        if(!no[i])
            prime[++prime_cnt]=i,phi[i]=i-1;
        int cur = 1;
        int to = i * prime[cur];
        while(cur<=prime_cnt && to <= maxn)
        {
            no[to]=true;
            if(i%prime[cur] == 0) { phi[to] = phi[i] * prime[cur]; break; }
            else phi[to] = phi[i] * phi[prime[cur]]; // based on i!!
            to = i * prime[++cur];
        }
    }
    for(int i=1;i<=maxn;i++) sum[i] = sum[i-1] + phi[i];
}
int main()
{
    freopen("table.in","r",stdin);
    freopen("table.out","w",stdout);
    build_phi();
    int n;
    while(~scanf("%d",&n) && n)
    {
        int ans = sum[n] - sum[1];
        ans = ans<<1|1;
        printf("%d\n",ans);
    }
    return 0;
}
版权声明:S'il vous plait.

相关文章推荐

[UVA 10820]Send a Table[欧拉函数][nloglog(n)]

题目链接:[UVA 10820]Send a Table[欧拉函数][nloglog(n)] 题意分析: 友人A想要打表过题,每个表内数据都是以数对的形式(x,y)出现,但是呢,表太大了,OJ不让...

UVA 10820 Send a Table 欧拉函数制phi表 累加sum

题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=19238 题意:统计n中有多少个f(x,y),x,y 思路:其实是一个二元组(x,y)...

UVa 10820 Send a Table (Farey数列&欧拉函数求和)

思路: 1. 答案明显是2|Fn|+1(Fn指Farey数列) 2. 怎么算|Fn|?——由于Farey数列包含了的全部项和与n互质的每个数的相应分数,故有 , 从而 完整代码:

uvaoj 10820 Send a Table 欧拉函数打表

uvaoj 10820 Send a Table 欧拉函数打表 这个题目就是让求小于等于n的数中,互质二元组(x,y)的个数。因为(x,y)和(y,x)不同,我们假定只考虑x 下面先介绍一下欧拉函...

数论:欧拉函数 uva 10820

10820 - Send a Table Time limit: 3.000 seconds  http://uva.onlinejudge.org/index.php?option=com_...

欧拉函数线性筛法详解

该算法在可在线性时间内筛素数的同时求出所有数的欧拉函数。

质数快速筛法;欧拉函数线性打表;因子个数,因子和打表

//质数的快速线性筛法,不会重复筛选 //1.对于(质数*质数)的情况:不会出现重复筛的情况 //2.对于(质数*合数)的情况:就会出现重复筛,例如4*3,6*2 //由于任意个合数可以分解为质数的乘...

线性筛法 与 线性求欧拉函数 的计算模板

简介 懂得如何快速计算质数是十分重要的 在筛法的基础上,我们可以使用更为高级的线性筛法! 顾名思义,就是时间复杂度是线性的,即 O(N)O(N) ,N 为所求的质数范围 而对编程有所接触的人,应该都知...

uva10820 Send a Table

问题转化+欧拉函数

欧拉线性筛法求素数(顺便实现欧拉函数的求值)

我们先来看一下最经典的埃拉特斯特尼筛法。时间复杂度为O(n loglog n)int ans[MAXN]; void Prime(int n) { int cnt=0; memset(...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)