UVA 10820 Send a Table [欧拉函数] [线性筛法]

原创 2016年07月24日 17:41:14

Send a Table
Time Limit: 3000MS
Memory Limit: Unknown
64bit IO Format: %lld & %llu

When participating in programming contests, you sometimes face the following problem: You know
how to calcutale the output for the given input values, but your algorithm is way too slow to ever
pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that
would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half
an hour and produce a table of answers for all possible input values, encode this table into a program,
submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,
but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.
But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program
small enough to pass the judge. The situation looked hopeless, until he discovered the following property
regarding the answers: the answers where calculated from two integers, but whenever the two
input values had a common factor, the answer could be easily derived from the answer for which the
input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range
[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer
from it by applying some simple calculations involving Answer(x, y) and k.
For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value
combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),
Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived
from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from
Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,
so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the
number of function Jimmy has to pre-calculate.

Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which
indicates the value of N. Input is terminated by a line which contains a zero. This line should not be
processed.

Output
For each line of input produce one line of output. This line contains an integer which indicates how
many values Jimmy has to pre-calculate for a certain value of N.

Sample Input
2
5
0

Sample Output
3
19


求范围内 x , y 互质的个数 ANS = 2*f(n) + 1
x == y 时 也算一种情况

O(nloglogn) Eratosthenes筛法

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<iomanip>
#include<ctime>
#include<climits>
#include<cctype>
#include<algorithm>
#ifdef WIN32
#define AUTO "%I64d"
#else
#define AUTO "%lld"
#endif
using namespace std;
#define smax(x,tmp) x=max((x),(tmp))
#define smin(x,tmp) x=min((x),(tmp))
#define maxx(x1,x2,x3) max(max(x1,x2),x3)
#define minn(x1,x2,x3) min(min(x1,x2),x3)
const int INF=0x3f3f3f3f;
const int maxn = 50000;
int phi[maxn + 5];
int sum[maxn + 5];
void build_phi()
{
    phi[1] = 1;
    for(int i=2;i<=maxn;i++) if(!phi[i])
        for(int j=i;j<=maxn;j+=i)
        {
            if(!phi[j]) phi[j] = j;
            phi[j] = phi[j] / i * (i-1);
        }
    for(int i=1;i<=maxn;i++) sum[i] = sum[i-1] + phi[i];
}
int main()
{
    freopen("table.in","r",stdin);
    freopen("table.out","w",stdout);
    build_phi();
    int n;
    while(~scanf("%d",&n) && n)
    {
        int ans = sum[n] - sum[1];
        ans = ans<<1|1;
        printf("%d\n",ans);
    }
    return 0;
}

O(n) 欧拉筛法 , 每个合数只会计算一次 不存在多次访问

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<iomanip>
#include<ctime>
#include<climits>
#include<cctype>
#include<algorithm>
#ifdef WIN32
#define AUTO "%I64d"
#else
#define AUTO "%lld"
#endif
using namespace std;
#define smax(x,tmp) x=max((x),(tmp))
#define smin(x,tmp) x=min((x),(tmp))
#define maxx(x1,x2,x3) max(max(x1,x2),x3)
#define minn(x1,x2,x3) min(min(x1,x2),x3)
const int INF=0x3f3f3f3f;
const int maxn = 50000;
bool no[maxn];
int prime[maxn>>3]; // n / ln(n)
int prime_cnt;
int phi[maxn + 5];
int sum[maxn + 5];
void build_phi()
{
    phi[1] = 1;
    prime_cnt = 0;
    for(int i=2;i<=maxn;i++)
    {
        if(!no[i])
            prime[++prime_cnt]=i,phi[i]=i-1;
        int cur = 1;
        int to = i * prime[cur];
        while(cur<=prime_cnt && to <= maxn)
        {
            no[to]=true;
            if(i%prime[cur] == 0) { phi[to] = phi[i] * prime[cur]; break; }
            else phi[to] = phi[i] * phi[prime[cur]]; // based on i!!
            to = i * prime[++cur];
        }
    }
    for(int i=1;i<=maxn;i++) sum[i] = sum[i-1] + phi[i];
}
int main()
{
    freopen("table.in","r",stdin);
    freopen("table.out","w",stdout);
    build_phi();
    int n;
    while(~scanf("%d",&n) && n)
    {
        int ans = sum[n] - sum[1];
        ans = ans<<1|1;
        printf("%d\n",ans);
    }
    return 0;
}
版权声明:S'il vous plait.

UVa 10820 Send a Table(欧拉函数)

题目链接:UVa 10820 - Send a Table 欧拉函数。
  • fobdddf
  • fobdddf
  • 2014年04月20日 22:21
  • 536

UVa 10820 - Send a Table(欧拉函数)

找出1 - n 中所有与n互质的个数。 根据欧拉函数phi(n) = n * (1 - 1 / p1) * (1 - 1 / p2)...(1 - 1 / pn), 其中px为n的所有质因数。...
  • xuziye0327
  • xuziye0327
  • 2015年03月24日 12:54
  • 185

UVA 10820 Send a Table (欧拉函数打表)

题意不说了。 思路: 写几个样例就发现规律了: 比如n =3 的时候: (1,1) (1,2)(1,3)(2,3) (2,1)(3,1)(3,2) 会发现x和y 相等的只有(1,1) ...
  • aozil_yang
  • aozil_yang
  • 2017年03月01日 17:16
  • 124

UVA - 10820 - Send a Table (欧拉函数)

题目传送:UVA - 10820 思路:找出1~n之间的所有互质的整数对,可以用欧拉函数做,先打出50000以内的欧拉函数的表,然后累加即可 AC代码: #include #i...
  • u014355480
  • u014355480
  • 2015年05月02日 20:52
  • 512

UVA - 10820 Send a Table(欧拉函数)

原题: When participating in programming contests, you sometimes face the following problem: You know...
  • leqeo
  • leqeo
  • 2017年08月10日 11:02
  • 65

uva 10820 Send a Table 欧拉函数

题意:抽象出来的题意为求 1.求 Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素...
  • u013044116
  • u013044116
  • 2015年02月14日 16:48
  • 308

Send a Table - UVa 10820 欧拉函数

Send a Table Input: Standard Input Output: Standard Output   When participating in programming c...
  • u014733623
  • u014733623
  • 2015年02月02日 18:16
  • 408

UVA 10820 Send a Table(欧拉函数)

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1761...
  • theArcticOcean
  • theArcticOcean
  • 2016年01月20日 08:44
  • 246

uva 10820 - Send a Table(欧拉函数)

题目链接:uva 10820 - Send a Table 题目大意:给出一个n,求从1~n中任意两个数互质的对数为多少,和算两对。 解题思路:白书上介绍用nloglogn的算法构...
  • u011328934
  • u011328934
  • 2013年10月24日 23:45
  • 1006

10820 Send a Table(欧拉函数)

Problem A Send a Table Input: Standard Input Output: Standard Output   When participating in pr...
  • u011217342
  • u011217342
  • 2013年11月06日 13:41
  • 665
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:UVA 10820 Send a Table [欧拉函数] [线性筛法]
举报原因:
原因补充:

(最多只允许输入30个字)