NOIP2009 Hankson的趣味题 [数论]

原创 2016年08月30日 15:10:52

Hankson 的趣味题 2009年NOIP全国联赛提高组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold

题目描述 Description
Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson。现
在,刚刚放学回家的Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数。现
在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公
倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整
数x 满足:
1. x 和a0 的最大公约数是a1;
2. x 和b0 的最小公倍数是b1。
Hankson 的“逆问题”就是求出满足条件的正整数x。但稍加思索之后,他发现这样的
x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的x 的个数。请你帮
助他编程求解这个问题。

输入描述 Input Description
第一行为一个正整数n,表示有n 组输入数据。接下来的n 行每
行一组输入数据,为四个正整数a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入
数据保证a0 能被a1 整除,b1 能被b0 整除。

输出描述 Output Description
每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出0;
若存在这样的 x,请输出满足条件的x 的个数;

样例输入 Sample Input
2
41 1 96 288
95 1 37 1776

样例输出 Sample Output
6
2

数据范围及提示 Data Size & Hint
【说明】
第一组输入数据,x 可以是9、18、36、72、144、288,共有6 个。
第二组输入数据,x 可以是48、1776,共有2 个。
【数据范围】
对于 50%的数据,保证有1≤a0,a1,b0,b1≤10000 且n≤100。
对于 100%的数据,保证有1≤a0,a1,b0,b1≤2,000,000,000 且n≤2000。


由题目条件得出 (x/a1,a0/a1)==1 && (b1/x,b1/b0)==1,那么首先a1|b1才有解。
其次,x一定是b1的因数,那么分解后枚举即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<iomanip>
#include<ctime>
#include<climits>
#include<cctype>
#include<algorithm>
#ifdef WIN32
#define AUTO "%I64d"
#else
#define AUTO "%lld"
#endif
using namespace std;
#define smax(x,tmp) x=max((x),(tmp))
#define smin(x,tmp) x=min((x),(tmp))
#define maxx(x1,x2,x3) max(max(x1,x2),x3)
#define minn(x1,x2,x3) min(min(x1,x2),x3)
typedef long long LL;
const int INF=0x3f3f3f3f;
const int maxn = 15;
int prime[maxn],tot[maxn],cnt;
int a0,b0,a1,b1;
void get_prime(int num)
{
    memset(prime,0,sizeof(prime));
    memset(tot,0,sizeof(tot));
    cnt=0;
    int x=num;
    for(int i=2;(LL)i*i<=num;i++)
        if(x%i==0)
        {
            prime[++cnt]=i;
            while(x%i==0) x/=i,tot[cnt]++;
        }
    if(x>1) prime[++cnt]=x,tot[cnt]++;
}
int ans;
int gcd(int a,int b)
{
    if(!b) return a;
    return gcd(b,a%b);
}
inline bool check(int x) { return gcd(x/a1,a0/a1)==1 && gcd(b1/x,b1/b0)==1; }
void dfs(int k,int product)
{
    if(k==cnt+1)
    {
        if(product%a1==0 && check(product)) ans++;
        return;
    }
    dfs(k+1,product);
    for(int i=1;i<=tot[k];i++)
    {
        product*=prime[k];
        dfs(k+1,product);
    }
}
int main()
{
    freopen("son.in","r",stdin);
    freopen("son.out","w",stdout);
    int cas;
    scanf("%d",&cas);
    while(cas--)
    {
        ans=0;
        scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
        if(b1%a1)
        {
            printf("0\n");
            continue;
        }
        get_prime(b1);
        dfs(1,1);
        printf("%d\n",ans);
    }
    return 0;
}
版权声明:S'il vous plait. 举报

相关文章推荐

【数论】【NOIP2009】Hankson的趣味题

时间限制: 3 Sec 内存限制: 64 MB题目描述Hanks博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson。现在,刚刚放学回家的Hankson正在思考一个...

【数论】noip2009Hankson 的趣味题

【问题描述】 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson。现在,刚刚放学回家的Hankson正在思考一个有趣的问题。 今天在课堂上,老师讲解了如何求...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

【NOIP2009】【数论】T2 Hankson的趣味题 题解

题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson。现 在,刚刚放学回家的Hankson 正在思考一个有趣的问题。...

【NOIP2009】Hankson的趣味题 数论题,质因数分解处理

题解:各种质因数分解然后处理每一种质因数对于答案的最大个数和最小个数。 1.用d处理一个上界出来 2.用d/c处理一个下界出来 3.用b处理一个下界出来 4.用a处理一个上界出来 5.ans...

NOIP-2009-B2 HANKSON 的趣味题

暴力搜索=80分,对于暴力搜索这种方法来讲,已经不错了! 注意:下面是80分的代码。 正宗解法也是暴力搜索,不过搜索对象不一样 ;) /* * noip-2009-b2 hankson...

【Noip2009】hankson的趣味题

题目描述Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。今天在课堂上,老师讲解了如...

NOIP2009 题解 潜伏者 Hankson的趣味题 最优贸易 靶形数独

大白兔的奶糖’s T解T1 潜伏者R 国和S 国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动。 历尽艰险后,潜伏于 S 国的R 国间谍小C 终于摸清了S 国军用密码的编码规则: 1. S...

NOIp2009TG T2/Luogu P1072 Hankson的趣味题 解题报告

按照规矩,先来看一下题目 题目描述Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。...

NOIP2009解题报告(C/C++)(潜伏者)(Hankson的趣味题)(最优贸易)(靶形数独)

NOIP2009解题报告

【NOIP2009】洛谷1072 Hankson的趣味题

筛素数+质因数分解
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)