# Superformular(Supershapes)

259人阅读 评论(0)

The superformula is a generalization of the superellipse and was first proposed by Johan Gielis.

Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature.

In polar coordinates, with $r$ the radius and $\varphi$ the angle, the superformula is:

The formula appeared in a work by Gielis. It was obtained by generalizing the superellipse, named and popularized by Piet Hein, a Danish mathematician.

[hide

## Extension to higher dimensions

It is possible to extend the formula to 3, 4, or n dimensions, by means of the spherical product of superformulas. For example, the 3D parametric surface is obtained by multiplying two superformulas r1and r2. The coordinates are defined by the relations:

$x \,=\, r_1(\theta)\cos(\theta)r_2(\phi)\cos(\phi)$
$y \,=\, r_1(\theta)\sin(\theta)r_2(\phi)\cos(\phi)$
$z \,=\, r_2(\phi)\sin(\phi)$

where $\phi$ varies between -π/2 and π/2 (latitude) and θ between  and π (longitude).

## Plots

GNU Octave program for generating these figures:

  function sf2d(n,a)
u=[0:.001:2*pi];
raux=abs(1/a(1).*abs(cos(n(1)*u/4))).^n(3)+abs(1/a(2).*abs(sin(n(1)*u/4))).^n(4);
r=abs(raux).^(-1/n(2));
x=r.*cos(u);
y=r.*sin(u);
plot(x,y);
end


3d Superformula: a=b=1; m, n1, n2 and n3 are shown in the pictures.

GNU Octave program for generating these figures:

 function sf3d(n, a)
u=[-pi:.05:pi];
v=[-pi/2:.05:pi/2];
nu=length(u);
nv=length(v);
for i=1:nu
for j=1:nv
raux1=abs(1/a(1)*abs(cos(n(1).*u(i)/4))).^n(3)+abs(1/a(2)*abs(sin(n(1)*u(i)/4))).^n(4);
r1=abs(raux1).^(-1/n(2));
raux2=abs(1/a(1)*abs(cos(n(1)*v(j)/4))).^n(3)+abs(1/a(2)*abs(sin(n(1)*v(j)/4))).^n(4);
r2=abs(raux2).^(-1/n(2));
x(i,j)=r1*cos(u(i))*r2*cos(v(j));
y(i,j)=r1*sin(u(i))*r2*cos(v(j));
z(i,j)=r2*sin(v(j));
endfor;
endfor;
mesh(x,y,z);
endfunction;
int segments = 800;
float scale = 20.0;

float a  = 1.0;
float b  = 0.80;
float m  = 15.0;
float n1 = -8.0;
float n2 = 12.0;
float n3 = 10.0;

float tau = 6.28318530718;
float step = tau / segments;

float phi = 0.0;

for (float o=0.0; o<0.5; o+=0.01) {

for (int i=0; i<segments; i++) {
float mp4 = (m * phi) / 4.0;
float term_a = pow(abs((cos(mp4) / a)), n2);
float term_b = pow(abs((sin(mp4) / b)), n3);
float r = pow((term_a + term_b), -(1 / n1));
addpoint( geoself(), set(cos(phi)*scale*r, sin(phi)*scale*r, 0) );
phi += step;
}

a += o;
b += o/25;
}

## References

0
0
相关文章推荐

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：516243次
• 积分：7197
• 等级：
• 排名：第3109名
• 原创：172篇
• 转载：232篇
• 译文：4篇
• 评论：190条
博客专栏
 开启 UE4 神秘的大门 文章：15篇 阅读：12655