问题:怎样将一个正整数n,平均分成若干份,每份可以为小数,份数也可以是小数,使得这若干个数的乘积最大?每份为多少?请证明之。
证明:
一个正整数n,假定平均分成x份,那么每份为,所有份数的乘积则为
,令
,现在问题就转化为当x等于多少时,
有最大值。为此,我们求其一阶导数(其中求
见补充说明):
令,即
很容易可以计算出:
即分成n / e份时,各份数相乘所得到的积最大,每份的大小为e。
证毕。
补充说明:
求过程如下:
整个求证过程要用到一个求导公式和一个求导规则,它们分别如下:
在实际应用中,份数必须为整数,即所取的份数为:使得每份最接近e时的整数。