【BZOJ 3672】[Noi2014]购票 树分治+斜率优化

原创 2017年01月03日 09:57:25

好了,回来填这个坑,闲来无事就尽力说清楚一些吧,code较难的部分我加了注释。

首先让我们考虑如果题目要求的不是一个树形结构,而是线性的我们怎么来处理。(其实就变成了一道水水的斜率优化dp),至少这个方程还是很好化简的,假设k<j而且f[k]比f[j]更优,满足(f[k]-f[j])/(dis[k]-dis[j])>p[i]的斜率方程式,但是我们会吃惊的发现,不等式左边x是单调的,但是不等式的右边斜率并不单调(p值给定,p[k]可以比p[j]大,也可以小),也就是说,在维护单调队列的时候,我们当然希望不等式左边越大越好,但是当前满足的斜率后面不一定满足,这里有点抽象,实际就是单调队列的右指针可以++或者--但是左指针却不能向右移动,还是一个半凸包,然后每次找最优的转移的时候,二分斜率找到最后一个斜率大于p[i]的点用它来转移。(其实即使一边不单调还是很水啦,重要的是接下来的怎么套树分治)。

首先需要明确的是,一棵树其实就是很多的链组成的对吧,也就是说,可以先思考暴力怎么求,把树的根节点到每一个叶子节点都当成一个线性的链状结构,分别求解,然后会发现其实有很多部分都是重复了的,例如i节点个j节点的公共祖先到根节点之间的链其实对他们的影响都是一样的,却被重复计算了。所以树分治的思想就出来了,在处理一颗子树的时候,我先找到它的重心,然后用重心到根节点之间的影响去更新它的子树的答案。那好,又怎么来获得这个重心到根节点之间的答案呢,一个想法就是直接暴力算,但是既然是树分治,还有想法就是把这个节点和根继续分治求解,然后再倒回来求其他子树的解,所以就是:

1.处理当前子树

2.找当前子树的重心

3.一起分治重心和根节点

3.得到根节点到子树重心之间链的答案

4.用这个答案来更新重心其他子树的ans

5.继续分治重心的其他子树

注意,一定要分清楚重心和根节点的区别。总之这道题让我对树分治和斜率优化dp都有了一个更深的理解,就作为一道例题把。


    #include<cstdio>  
    #include<cstring>  
    #include<iostream>  
    #include<algorithm>  
    #define maxn 200020*2  
    #define LL long long  
    using namespace std;  
    int n,fa[maxn],q[maxn*2],sta[maxn*2],size,head[maxn],ff[maxn],cnt,tot,sum[maxn],rt,vis[maxn];  
    LL f[maxn],p_v[maxn],q_v[maxn],l_v[maxn],dis[maxn];  
    double slp[maxn*2];  
    struct edge{int v,next;LL w;}e[maxn*2];  
    void adde(int a,int b,LL c){e[tot].v=b,e[tot].w=c,e[tot].next=head[a];head[a]=tot++;}  
    bool cmp(const int& a,const int& b){return dis[a]-l_v[a]>dis[b]-l_v[b];}  
      
    void getrt(int u){  
        ff[u]=0,sum[u]=1;  
        for(int v,i=head[u];i!=-1;i=e[i].next){  
            if(vis[v=e[i].v])continue;  
            getrt(v);  
            sum[u]+=sum[v];  
            ff[u]=max(ff[u],sum[v]);  
        }  
        ff[u]=max(ff[u],size-ff[u]);  
        if(ff[u]<ff[rt])rt=u;  
    }  
      
    double getk(int a,int b){return (double)(f[a]-f[b])/(dis[a]-dis[b]);}  
    void dfs(int u){  
        sta[++cnt]=u;  
        for(int v,i=head[u];i!=-1;i=e[i].next){  
            if(vis[v=e[i].v])continue;  
            dfs(v);  
        }  
    }  
    void query(int x,int l,int r){//二分斜率   
        while(l<r){  
            int mid=l+r>>1;  
            if(slp[mid]>=p_v[x])l=mid+1;  
            else r=mid;  
        }  
        f[x]=min(f[x],f[q[l]]+(dis[x]-dis[q[l]])*p_v[x]+q_v[x]);  
    }  
      
    void solve(int u){  
        ff[rt=0]=1e9;  
        getrt(u);  
        int x=rt;vis[x]=1;//找到当前节点为根的子树的重心,并且处理这个重心  
        if(x!=u){//不重合,说明需要处理这个重心到根节点这条链之间的祖先的关系   
            size=sum[u]-sum[x];//处理这一条链以及链上的一些其他的奇奇怪怪的子树   
      
            solve(u);//继续处理这棵树,但是此时的子树是已经不包含x了的其余的子树   
            cnt=0;dfs(x);//此时我们得到了重心和根节点之间的链的关系,所以用这条链来更新重心的其他子树的dp值   
            sort(sta+1,sta+1+cnt,cmp);//按能够到达节点的深度从大到小排序   
              
            int i=1,y=fa[x],r=1;q[1]=y;  
            while(i<=cnt&&dis[sta[i]]-l_v[sta[i]]>dis[y])i++;  
              
            for(;i<=cnt;i++){//深度减上去   
                while(y!=u&&dis[sta[i]]-dis[fa[y]]<=l_v[sta[i]]){//还能够向上走   
                    y=fa[y];  
                    while(r>1&&getk(q[r-1],q[r])<=getk(q[r],y))r--;//加入一个新的元素,剔除不会更优的元素   
                    slp[r]=getk(q[r],y),q[++r]=y;  
                }  
                query(sta[i],1,r);//跟新这个节点的dp值    
            }  
        }else cnt=0,dfs(x);//重心和根节点之间没有链了   
        for(int i=1;i<=cnt;i++)if(dis[sta[i]]-dis[x]<=l_v[sta[i]])  
            f[sta[i]]=min(f[sta[i]],f[x]+(dis[sta[i]]-dis[x])*p_v[sta[i]]+q_v[sta[i]]);  
        for(int i=head[x];i!=-1;i=e[i].next){  
            if(vis[e[i].v])continue;  
            size=sum[e[i].v];solve(e[i].v);  
        }  
    }  
      
    int main(){  
        memset(head,-1,sizeof(head));int t;  
        scanf("%d%d",&n,&t);LL x;  
        for(int i=2;i<=n;i++){  
            scanf("%d%lld%lld%lld%lld",fa+i,&x,p_v+i,q_v+i,l_v+i);  
            adde(fa[i],i,x);  
            dis[i]=dis[fa[i]]+x;  
        }  
        memset(f,0x3f,sizeof(f));f[1]=0;  
        size=n;  
        solve(1);  
        for(int i=2;i<=n;i++)printf("%lld\n",f[i]);  
        return 0;  
    }  


版权声明:你喜欢就好

相关文章推荐

BZOJ 3672 NOI2014 购票 树的点分治+斜率优化

题目大意:给定一棵以1为根的有根树,每条边有边权,每个点有三个值pi,qi,li 从一个点可以走到它的某个祖先处,前提是距离d不超过li,花销为pi*d+qi 求从每个点到达根节点的最小花销 这道题的...
  • PoPoQQQ
  • PoPoQQQ
  • 2015年01月12日 12:10
  • 3831

BZOJ3672: [Noi2014]购票 树分治 斜率优化

http://www.lydsy.com/JudgeOnline/problem.php?id=3672 树上的CDQ分治。 和常规CDQ思路相同,一个点的可行决策点是从这个点往上连续一段,那么在...

[BZOJ3672][NOI2014]购票-点分治-CDQ分治-斜率优化DP

购票Description今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的...
  • zlttttt
  • zlttttt
  • 2017年06月10日 19:59
  • 75

3672: [Noi2014]购票 树剖+线段树+斜率优化

Description今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。 全国的城市构成了一棵以SZ市为根的有根树,...
  • LZJ209
  • LZJ209
  • 2017年05月30日 11:33
  • 159

【BZOJ】【P3672】【Noi2014】【购票】【题解】【线段树+凸包+链剖+三分】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3672 我写的是nlog^3

BZOJ 3672 NOI2014 购票 树的分治 NOI2014全AC达成!!!!

警告 本篇文章作者大脑已成一团浆糊,为了保证文章的流畅性,请阅读者将脑子搅成纸浆后方可正常阅读 首先题目大意: 给定一棵以1为根的有根树,边有边权,每个点有三个参数:p,q,l 从该点可以走到它的祖宗...
  • PoPoQQQ
  • PoPoQQQ
  • 2014年09月02日 17:38
  • 4153

bzoj3672: [Noi2014]购票

为什么我这么慢!!! 这道题大概有两种思路,树分治和线段树。 树分治:使用类似cdq的方式,1:找重心,分裂,2:work(根所在的树)3:用重心到根的点的答案更新重心的子树,4:work(重心的...
  • Miao_zc
  • Miao_zc
  • 2016年12月12日 15:15
  • 302

bzoj3672 [Noi2014]购票

Description  今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。        全国的城市构成了一棵以SZ市为根...

bzoj 3672: [Noi2014]购票

Description  今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。        全国的城市构成了一棵以SZ市为根的有根...
  • lqybzx
  • lqybzx
  • 2015年04月10日 22:28
  • 797

[BZOJ1492][NOI2007][斜率优化][动态凸包][DP][分治]货币兑换cash

[题目] [算法] dp
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【BZOJ 3672】[Noi2014]购票 树分治+斜率优化
举报原因:
原因补充:

(最多只允许输入30个字)