tensorflow 第一个程序MNIST手写数字识别(Softmax Regression实现)

原创 2017年06月26日 22:07:19

完成了tensorflow的第一次实战


代码如下:(黑字为注释,红字为代码行)

# -*- coding: utf-8 -*-

"""
Spyder Editor

This is a temporary script file.
"""



#finish data loading(MNIST)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

#query the situation of the data set
print(mnist.train.images.shape, mnist.train.labels.shape)#the dimension and type number of training set data
print(mnist.test.images.shape, mnist.test.labels.shape)#...of the test set data
print(mnist.validation.images.shape, mnist.validation.labels.shape)#...of the vertification set data

#Loading tensorflow library flies
import tensorflow as tf

#This use of InteractiveSession() allow us to run variables without needing to constantly refer to the session object
sess = tf.InteractiveSession()

#Create a placeholder which using to input data
x = tf.placeholder(tf.float32, [None, 784])#the first parameter is the data type and the second is the shape of data
#'None' means un-limited data-input and '784' up to the demensions of the data

#Create Variable Objects for the weights and biases of Softmax Regression Model.We firstly update these with zero.
W = tf.Variable(tf.zeros([784, 10]))#the shape of W is [784,10],the number of demensions and type.
b = tf.Variable(tf.zeros([10]))
#We use function softmax() which belonging to tf.nn to calculate y
#tf.matmul() is the function using to calculate the result of the matrix multiplication
y = tf.nn.softmax(tf.matmul(x, W) + b)

#Here we use cross-entropy as the loss function
y_ = tf.placeholder(tf.float32, [None, 10])
#calculate the cross-entry
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
#tf.reduce_sum is the function using to calculate the sum and tf.reduce_mean using to calculate the average of every batch
#the second parameter is used to demensionality reduction and the '1'means the demension you wants

#the Optimization algorithm using to change the weights
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#tf.train.GradientDescentOptimizer is a packaged optimizer and set the learning rate to 0.5,the optimal object is cross-entropy


#Use function tf.global_variables_initializer().run() to start iterative training to execute operation train-step
tf.global_variables_initializer().run()

#everytime,produce a mini-batch consisting of 100 randly drawing samples and feeds them toplaceholder and train.

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    train_step.run({x: batch_xs, y_: batch_ys})


#calculate the accuracy
#true or false judgement
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

#transform the data type 'Bool' to 'float32' and calculate the average value
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))

TensorFlow学习笔记(二)——实例Softmax Regression识别手写数字

在下学习TensorFlow的主要参考资料是电子工业出版社的[《TensorFlow实战》](https://book.douban.com/subject/26974266/),实例也基本都来自这本...
  • u011159042
  • u011159042
  • 2017年03月31日 10:55
  • 1635

R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)

本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:/...
  • sinat_26917383
  • sinat_26917383
  • 2016年10月12日 10:35
  • 2585

Tensorflow #1 祖传例子 MNIST 手写识别

1 前语最近想学习DL,但是发现没有什么好的入门的东西,最近方向一直比较迷茫,东做做西做做,现在又来这里做Tensorflow了。关于Tensorflow 1.0是如何安装的,可以直接参照他的官方文档...
  • MebiuW
  • MebiuW
  • 2016年09月21日 12:27
  • 3945

【TensorFlow-windows】(一)实现Softmax Regression进行手写数字识别(mnist)

博文主要内容有: 1.softmax regression的TensorFlow实现代码(教科书级的代码注释) 2.该实现中的函数总结平台: 1.windows 10 64位 ...
  • u011995719
  • u011995719
  • 2017年06月20日 10:41
  • 326

Tensorflow的Helloword:使用简单Softmax Regression模型来识别Mnist手写数字

首先准备数据:import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read_data_sets("MNIS...
  • zjwcdd
  • zjwcdd
  • 2016年09月02日 20:35
  • 745

学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

TensorFlow实现Softmax Regression(回归)识别手写数字。MNIST(Mixed National Institute of Standards and Technology ...
  • weixin_38776853
  • weixin_38776853
  • 2017年07月08日 12:40
  • 386

TensorFlow实现Softmax Regression手写数字识别

MNIST数据集 one-hot编码 Softmax Regression算法 使用TensorFlow实现Softmax算法 主要步骤 完整的代码实现 总结 这篇文章是学习《Tenso...
  • csdnldp
  • csdnldp
  • 2017年06月15日 17:12
  • 140

TensorFlow(二)实现Softmax Regression 识别手写数字

1、数据MNIST 2、任务对手写数字的图片进行分类,转成 0~9 一共 10 类3、Softmax Regression 工作原理可以判定为某类的特征相加,然后将这些特征转化为判定是这一类的概率4...
  • qq_21046135
  • qq_21046135
  • 2017年07月29日 20:58
  • 230

TensorFlow实现Softmax Regression识别手写数字

代码(源代码都有详细的注释)和数据集可以在github下载: https://github.com/crazyyanchao/TensorFlow-HelloWorld 这个版本准确率在0.917...
  • superman_xxx
  • superman_xxx
  • 2017年03月17日 13:43
  • 509

Tensorflow实战学习(二十四)【实现Softmax Regression(回归)识别手写数字】

TensorFlow实现Softmax Regression(回归)识别手写数字。MNIST(Mixed National Institute of Standards and Technology ...
  • WuLex
  • WuLex
  • 2017年11月21日 09:31
  • 95
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tensorflow 第一个程序MNIST手写数字识别(Softmax Regression实现)
举报原因:
原因补充:

(最多只允许输入30个字)