tensorflow 第一个程序MNIST手写数字识别(Softmax Regression实现)

原创 2017年06月26日 22:07:19

完成了tensorflow的第一次实战


代码如下:(黑字为注释,红字为代码行)

# -*- coding: utf-8 -*-

"""
Spyder Editor

This is a temporary script file.
"""



#finish data loading(MNIST)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

#query the situation of the data set
print(mnist.train.images.shape, mnist.train.labels.shape)#the dimension and type number of training set data
print(mnist.test.images.shape, mnist.test.labels.shape)#...of the test set data
print(mnist.validation.images.shape, mnist.validation.labels.shape)#...of the vertification set data

#Loading tensorflow library flies
import tensorflow as tf

#This use of InteractiveSession() allow us to run variables without needing to constantly refer to the session object
sess = tf.InteractiveSession()

#Create a placeholder which using to input data
x = tf.placeholder(tf.float32, [None, 784])#the first parameter is the data type and the second is the shape of data
#'None' means un-limited data-input and '784' up to the demensions of the data

#Create Variable Objects for the weights and biases of Softmax Regression Model.We firstly update these with zero.
W = tf.Variable(tf.zeros([784, 10]))#the shape of W is [784,10],the number of demensions and type.
b = tf.Variable(tf.zeros([10]))
#We use function softmax() which belonging to tf.nn to calculate y
#tf.matmul() is the function using to calculate the result of the matrix multiplication
y = tf.nn.softmax(tf.matmul(x, W) + b)

#Here we use cross-entropy as the loss function
y_ = tf.placeholder(tf.float32, [None, 10])
#calculate the cross-entry
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
#tf.reduce_sum is the function using to calculate the sum and tf.reduce_mean using to calculate the average of every batch
#the second parameter is used to demensionality reduction and the '1'means the demension you wants

#the Optimization algorithm using to change the weights
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#tf.train.GradientDescentOptimizer is a packaged optimizer and set the learning rate to 0.5,the optimal object is cross-entropy


#Use function tf.global_variables_initializer().run() to start iterative training to execute operation train-step
tf.global_variables_initializer().run()

#everytime,produce a mini-batch consisting of 100 randly drawing samples and feeds them toplaceholder and train.

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    train_step.run({x: batch_xs, y_: batch_ys})


#calculate the accuracy
#true or false judgement
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

#transform the data type 'Bool' to 'float32' and calculate the average value
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))

相关文章推荐

基于tensorflow的MNIST手写数字识别(三)--神经网络篇

想想还是要说点什么 抱歉啊,第三篇姗姗来迟,确实是因为我懒,而不是忙什么的,所以这次再加点料,以表示我的歉意。废话不多说,我就直接开始讲了。加入神经网络的意义 * 前面也讲到了,使...
  • wlmnzf
  • wlmnzf
  • 2016年06月17日 00:46
  • 3458

python 实现识别手写 MNIST数字集的程序

python 实现识别手写 MNIST 数字集的程序 我们需要做的第⼀件事情是获取 MNIST 数据。如果你是⼀个 git ⽤⼾,那么你能够 通过克隆这本书的代码仓库获得数据,  实现我们的⽹络来分类...

【TensorFlow-windows】(一)实现Softmax Regression进行手写数字识别(mnist)

博文主要内容有: 1.softmax regression的TensorFlow实现代码(教科书级的代码注释) 2.该实现中的函数总结平台: 1.windows 10 64位 ...

Tensorflow的Helloword:使用简单Softmax Regression模型来识别Mnist手写数字

首先准备数据:import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read_data_sets("MNIS...
  • zjwcdd
  • zjwcdd
  • 2016年09月02日 20:35
  • 686

TensorFlow实现Softmax Regression识别手写数字

代码(源代码都有详细的注释)和数据集可以在github下载: https://github.com/crazyyanchao/TensorFlow-HelloWorld 这个版本准确率在0.917...

学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

TensorFlow实现Softmax Regression(回归)识别手写数字。MNIST(Mixed National Institute of Standards and Technology ...

TensorFlow(二)实现Softmax Regression 识别手写数字

1、数据MNIST 2、任务对手写数字的图片进行分类,转成 0~9 一共 10 类3、Softmax Regression 工作原理可以判定为某类的特征相加,然后将这些特征转化为判定是这一类的概率4...

TensorFlow实现Softmax Regression手写数字识别

MNIST数据集 one-hot编码 Softmax Regression算法 使用TensorFlow实现Softmax算法 主要步骤 完整的代码实现 总结 这篇文章是学习《Tenso...
  • csdnldp
  • csdnldp
  • 2017年06月15日 17:12
  • 68

TensorFlow学习笔记(3)--实现Softmax逻辑回归识别手写数字(MNIST数据集)

基于MNIST数据集的 逻辑回归模型做十分类任务 没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程。多层神经网络依靠隐含层,则可以组合出高阶...
  • lwplwf
  • lwplwf
  • 2017年03月06日 22:15
  • 3250

《TensorfFlow实战》读书笔记(三) —— Tensorflow 实现 Softmax Regression 识别手写数字

《TensorfFlow实战》读书笔记(三) —— Tensorflow 实现 Softmax Regression 识别手写数字...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tensorflow 第一个程序MNIST手写数字识别(Softmax Regression实现)
举报原因:
原因补充:

(最多只允许输入30个字)