算法导论[Exercises 9.3-8 ]

本文介绍了一种在两个已排序数组中找到所有元素中位数的O(lgn)时间复杂度算法。通过递归地将问题规模减半并利用已排序数组的特点,有效地解决了该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Exercises 9.3-8

Let X[1 .. n] and Y [1 .. n] be two arrays, each containing n numbers already in sorted order. Give an O(lg n)-time algorithm to find the median of all 2n elements in arrays X and Y

解: 

     int findMedian( X[1..n], Y[1..n])  // X 和 Y均为n个以排序的数组

  1.  在 X,Y中取中位数,分别为m,n   O(1)
  2. 若m=n, return m
  3. //不妨设m<n,则有floor(n/2)个数小于m,floor(n/2)个数大约n.中位数一定在m-n的区间上
  4. return findMedian(X[floor(n/2)+1..n],Y[1..floor(n/2)])

     T(n) = T(n/2)+O(1)

     有master定理,可知复杂度为O(lgn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值