Python生成器generator之next和send运行流程

原创 2015年11月19日 10:59:38


对于普通的生成器,第一个next调用,相当于启动生成器,会从生成器函数的第一行代码开始执行,直到第一次执行完yield语句(第4行)后,跳出生成器函数。

然后第二个next调用,进入生成器函数后,从yield语句的下一句语句(第5行)开始执行,然后重新运行到yield语句,执行后,跳出生成器函数,

后面再次调用next,依次类推。下面是一个列子:

1 def consumer():
2     r = 'here'
3     for i in xrange(3):
4         yield r
5         r = '200 OK'+ str(i)
6
7 c = consumer()
8 n1 = c.next()
9 n2 = c.next()
10 n3 = c.next()

了解了next()如何让包含yield的函数执行后,我们再来看另外一个非常重要的函数send(msg)。其实next()和send()在一定意义上作用是相似的,区别是send()可以传递yield表达式的值进去,而next()不能传递特定的值,只能传递None进去。因此,我们可以看做c.next() 和 c.send(None) 作用是一样的。
需要提醒的是,第一次调用时,请使用next()语句或是send(None),不能使用send发送一个非None的值,否则会出错的,因为没有Python yield语句来接收这个值。
下面来着重说明下send执行的顺序。当第一次send(None)(对应11行)时,启动生成器,从生成器函数的第一行代码开始执行,直到第一次执行完yield(对应第4行)后,跳出生成器函数。这个过程中,n1一直没有定义。

下面运行到send(1)时,进入生成器函数,注意这里与调用next的不同。这里是从第4行开始执行,把1赋值给n1,但是并不执行yield部分。下面继续从yield的下一语句继续执行,然后重新运行到yield语句,执行后,跳出生成器函数。

即send和next相比,只是开始多了一次赋值的动作,其他运行流程是相同的。

1 def consumer():
2     r = 'here'
3     while True:
4         n1 = yield r
5         if not n1:
6             return
7         print('[CONSUMER] Consuming %s...' % n1)
8         r = '200 OK'+str(n1)
9
10 def produce(c):
11     aa = c.send(None)
12     n = 0
13     while n < 5:
14         n = n + 1
15         print('[PRODUCER] Producing %s...' % n)
16         r1 = c.send(n)
17         print('[PRODUCER] Consumer return: %s' % r1)
18     c.close()
19
20 c = consumer()
21 produce(c)

运行结果:

[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK1
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK2
[PRODUCER] Producing 3...
[CONSUMER] Consuming 3...
[PRODUCER] Consumer return: 200 OK3
[PRODUCER] Producing 4...
[CONSUMER] Consuming 4...
[PRODUCER] Consumer return: 200 OK4
[PRODUCER] Producing 5...
[CONSUMER] Consuming 5...
[PRODUCER] Consumer return: 200 OK5

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Python特性(十一):生成器对象的close方法

生成器对象的close方法会在生成器对象方法的挂起处抛出一个GeneratorExit异常。GeneratorExit异常产生后,系统会继续把生成器对象方法后续的代码执行完毕。参见下面的代码。 ...

Python深复制浅复制or深拷贝浅拷贝

Python深复制浅复制or深拷贝浅拷贝 简单点说 1. copy.copy 浅拷贝 只拷贝父对象,不会拷贝对象的内部的子对象。 2. copy.deepcopy 深拷贝 拷...

Python生成器generator之next和send运行流程

对于普通的生成器,第一个next调用,相当于启动生成器,会从生成器函数的第一行代码开始执行,直到第一次执行完yield语句(第4行)后,跳出生成器函数。 然后第二个next调用,进入生成器函数后,从...

Python:yield关键字以及next、send函数的作用

yield与生成器 def func(n): for i in range(0, n): print('func: ', i) # yield i f = f...

python特性(八):生成器对象的send方法

生成器对象是一个迭代器。但是它比迭代器对象多了一些方法,它们包括send方法,throw方法和close方法。这些方法,主要是用于外部与生成器对象的交互。本文先介绍send方法。 send方法有一...

python的迭代器iterator和生成器generator(关键字yield)的简单理解

python的迭代器iterator生成器generator(关键字yield)的简单理解

python生成器Generator

原文链接 通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那...

Python笔记-列表生成式、生成器generator(包括斐波拉契数列)、迭代器Iterator

列表生成式、生成器generator(包括斐波拉契数列)、迭代器Iterator

Python 生成器(generator)

Python 生成器

Python中的生成器(generator)

生成器是python中一个非常酷的特性,python 2.2中引入后在2.3变成了标准的一部分。它能够让你在许多情况下以一种优雅而又更低内存消耗的方式简化无界(无限)序列相关的操作。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Python生成器generator之next和send运行流程
举报原因:
原因补充:

(最多只允许输入30个字)