发布一个参考tornado的高性能c++网络库:libtnet

转载 2013年12月05日 14:27:32
 

发布一个参考tornado的高性能c++网络库:libtnet

分类: program 架构 523人阅读 评论(3) 收藏 举报

目录(?)[+]

libtnet是一个用c++编写的高性能网络库,它在设计上面主要参考tornado,为服务端网络编程提供简洁而高效的接口,非常易于使用。

Echo Server

void onConnEvent(const ConnectionPtr_t& conn, ConnEvent event, const void* context)
{
    switch(event)
    {
        case Conn_ReadEvent:
            {
                const StackBuffer* buffer = static_cast<const StackBuffer*>(context);
                conn->send(string(buffer->buffer, buffer->count));
            }
            break;
        default:
            break;
    }    
}

int main()
{
    TcpServer s;
    s.listen(Address(11181), std::bind(&onConnEvent, _1, _2, _3));

    s.start();

    return 0;
}

当程序启动,服务监听本地11181端口,我们使用telnet测试:

root@tnet:~# telnet 127.0.0.1 11181
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
hello world
hello world

可以看到,libtnet在使用上面非常简单,在listen的时候,指定一个回调函数,当有新的连接到来的时候,该回调函数就会与该connection进行绑定,这样该connection的任何事件都能通过回调进行处理。

在上面那个例子中,我们只关心了connection的ReadEvent,也就是读事件,然后将读取到的所有数据原封不动的转发回去。

Http Server

void onHandler(const HttpConnectionPtr_t& conn, const HttpRequest& request)
{
    HttpResponse resp;
    resp.statusCode = 200;
    resp.body.append("Hello World");

    conn->send(resp);
}

int main()
{
    TcpServer s;
    HttpServer httpd(&s);   
    httpd.setHttpCallback("/abc", std::bind(&onHandler, _1, _2));

    httpd.listen(Address(11181));    
    s.start(4);

    return 0;
} 

当server启动,程序使用本机11181端口提供http服务。我们使用curl测试。

curl http://127.0.0.1:11181/abc

return: hello world

可以看到,使用http server也非常简单,我们只需要对相应的路径绑定一个callback回调,当有请求发生的时候,对应的callback执行。

使用benchmark测试,发现性能也不错RPS能到16000+,在512MB,单核CPU下面进行ab压测,具体可以参考benchmark

Webscoket Server

void onWsCallback(const WsConnectionPtr_t& conn, WsEvent event, const void* context)
{
    switch(event)
    {
        case Ws_MessageEvent:
            {
                const string& str = *(const string*)context;
                conn->send("hello " + str);
            }
            break;
        default:
            break;
    }
}

int main()
{
    TcpServer s;

    HttpServer httpd(&s);

    httpd.setWsCallback("/push/ws", std::bind(&onWsCallback, _1, _2, _3));    

    httpd.listen(Address(11181));

    s.start();

    return 0; 
}

libtnet同样提供了websocket RFC6455的支持,使用方法同http server,只需要对相应的path注册特定的回调,就可以很方便的进行websocket交互。

Client

libtnet不光提供了server层面的相关功能,同时也集成了http clientwebsocket client以及redis client。使得libtnet也能方便的进行客户端网络功能的开发。对于具体的使用,可以参考example

设计上面的考量

libtnet只支持linux版本,虽然做一个跨平台的通用库是一件吸引力非常大的事情,但是综合考虑之后,我决定只做linux版本的,主要有以下几个原因:

  • Linux下面使用prefork + epoll是一种非常高效的网络编程模型,性能强悍,实现简单。虽然unix下面有kqueue,windows下面有IOCP,但是没必要为了适配所有得操作系统将代码写的复杂。
  • Linux在系统层面上面就提供了很多高性能的函数,譬如timerfd,eventfd等,不光性能提升,同时也简化了很多代码实现。
  • Linux在服务器编程领域的使用率很高,专门做精一个平台就够了。

因为高性能的网络编程通常都是使用异步的编程方式,所以经常可以看到代码被异步拆的特别分散,不利于编写。所以我在libtnet里面大量的使用了c++ bind以及shared_ptr技术,用来模拟函数闭包,以及解决对象生命周期管理问题,简化代码的编写。并且我也使用了c++ 0x相关技术,gcc的版本至少要在4.4以上。

对于如何设

相关文章推荐

发布一个参考tornado的高性能c++网络库:libtnet

libtnet是一个用c++编写的高性能网络库,它在设计上面主要参考tornado,为服务端网络编程提供简洁而高效的接口,非常易于使用。

高性能C++网络库libtnet实现:IOLoop

libtnet采用的是prefork + event loop的架构方式,在最新的linux系统中,提供了timerfd,eventfd,signalfd,加上原先的socket,大部分功能都可以抽象...

高性能C++网络库libtnet实现:http

HTTP libtnet提供了简单的http支持,使用也很简单。 一个简单的http server: void onHandler(const HttpConnectionPtr_t& ...

谈epoll与高性能

今天偶然看到两篇关于讨论epoll与高性能问题的文章,文章均颇为争议,下面是两篇文章和讨论的地址:     http://guanzhongdaoke-gmail-com.iteye.com/blo...

在Tornado下的C++开发

5.2 在Tornado下的C++开发基本的C++支持被捆绑在Tornado开发环境里。VxWorks提供了包含对所有程序的C++安全声明的头文件和必须的run-time support.标准的Tor...

一个tornado项目的大体结构

主要结构下面进行解释。App目录职责app用于存放程序需要运行的逻辑。 如下: common里面是通用的函数及方法。 business用于存放业务逻辑 dal专门用于数据库读写 db是数...

一个参考tornado的高性能c++网络库:libtnet

libtnet是一个用c++编写的高性能网络库,它在设计上面主要参考tornado,为服务端网络编程提供简洁而高效的接口,非常易于使用。 Echo Server void onConnEvent(...

高性能C++网络库libtnet实现:Connection

Connection libtnet只支持IPv4 TCP Connection,之所以这么做都是为了使得实现尽可能的简单。我们主要在Connection类中封装了对tcp连接的操作。 C...

高性能C++网络库libtnet实践:comet单机百万连接挂载测试

最近在用go语言做一个挂载大量长连接的推送服务器,虽然已经完成,但是内存占用情况让我不怎么满意,于是考虑使用libtnet来重新实现一个。后续我会使用comet来表明推送服务器。 对于comet...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)