无意中看到这么一个定理,wiki上的证明我是看不懂了...
http://en.wikipedia.org/wiki/Lucas%27_theorem
友情提示:上wiki,先翻墙- -||
千辛万苦...终于找到一个我能看懂的证明~
先贴个wiki上的公式:
For non-negative integers m and n and a prime p, the following congruence relation holds:

where

and

are the base p expansions of m and n respectively.
首先我们注意到 n=(ak...a2,a1,a0)p = (ak...a2,a1)p * p + a0
= [n/p]*p+a0
且m=[m/p]+b0
只要我们更够证明 C(n,m)=C([n/p],[m/p]) * C(a0,b0) (mod p)
剩下的工作由归纳法即可完成
我们知道对任意质数p: (1+x)^p == 1+(x^p) (mod p)
注意!这里一定要是质数 ................(为什么)
对 模p 而言
上式左右两边的x^m的系数对模p而言一定同余(为什么),其中左边的x^m的系数是 C(n,m) 而由于a0和b0都小于p
右边的x^m ( = x^(([m/p]*p)+b0)) 一定是由 x^([m/p]*p) 和 x^b0 相乘而得 (即发生于 i=[m/p] , j=b0 时) 因此我们就有了
C(n,m)=C([n/p],[m/p]) * C(a0,b0) (mod p)
这一结论!!!
写的很乱~将就看吧
Lucas定理推广(组合数取模)
比赛的时候,意外想到了个方法来处理组合数取模。一推,发现就是Lucas定理,并且,在模数是素数乘方的情况作了些推广。使得lucas能够处理模任意数的组合数取模。
Lucas定理
首先给出Lucas定理的递归描述
简要证明思路:
考虑连续的p个整数(p是素数),把能整除p的那个数除去,然后取模,再乘起来模p其实是-1(*)。注意,因为和p互素的原因,这东西是可约的。
再考虑这个组合公式
上下都有k项,你能取的长度为p的连续整数有k/p段(从后往前取),每一段去掉那个能被p整除的数,然后,上下因为有相同的段数,所以就被约掉了(明白为什么在这种情况下是可约的么?)。
为什么能被p整除的数要被单独的拉出来呢?因为,和模数有公因子的数加入取模运算会导致不可逆。所以这些能被p整除的数需要被提取出来单独处理。
于是,有了后面部分的C(n/p, k/p),其实就是每个被提取出来的数再提取了一个因子p(因为上下提取出来的数一样多,所以,这些p自然就被约掉了)。然后,你幸运的发现,他是个组合数,于是问题被递归。最后,我们还有个前缀没有被处理。但是,因为模数是p,所以有下面公式
把这写合并在一起,就有了Lucas定理的递归表述(公式1)
推广的Lucas
那么要怎么处理模数是素数p的乘方的情形呢?其实是一样的,只不过,有些东西就不再退化了,比如公式6。我们可以用同样的方式,先把因子p全部提取出来单独处理,于是得到如下的公式,来处理p的乘方。
其中
式2的前缀(F除以F)就是上面的公式6不能退化的情况。为什么?因为其中可能含有因子p。因子p加入会导致乘法取模的不可逆。
需要注意的是,前缀很可能不是整数,在写代码的时候这个地方很容易犯错!所以要先进入子问题(可以用一个栈搞定)。
一般的组合数取模
有了这些,我们能干什么呢?其实,Lucas及其扩展只是把原来的组合数取模问题分割成了更小规模的问题(有lg(k)/lg(p)个)。
考虑一个一般的问题,模数m任意。
策略:
我们把m先素数分解,然后用Lucas及其扩展分割。然后对每个小问题解决合并。合并可以用CRT进行(同余方程组,中国剩余定理)。于是,如果简单的组合数取模能在O(k)的时间完成,我们就得到一个时间复杂度的算法(其中p是m的素因子,t是该素因子的个数),然后我们需要用lg级别的时间,完成每一个的合并,空间取决于素数表的大小(当然,可以没有,没有的话,就是lg级别的空间了)
可能的退化:如果p非常小,t非常大,即模数是小素数的高次。这个时候问题被退化到差不多O(k)的复杂度,k很大的情况下会很慢。但是经过测试,平均的情况非常快。
下面给出代码
CombinationNumber.cpp
包含一个比扩展lucas更稳定的版本
(很长,包括了需要用到的所有模块,同余方程组素数表什么的都在,用的时候记得先生成素数表):
PS:公式5: Wilson定理,当然这东西是什么不重要,因为都会被约掉。
基于二进制的递推
快半年没更新了,囧。。
把去年的某类结果整理了下,总结如下:
我们都习惯了前后项的逐项递推策略,这类一般的策略,可以称之为线性方式。下面,我说一种当序列满足某些性质是能狗构造的平方递推模式(基于项的二进制表示)
序列需要满足的性质
***我们假设序列为a[1], a[2], a[3], a[4], a[5], ..., a[n],以下所说的“简单”,意思是计算时间代价低于线性
- a[n] -> a[2n]是简单的(n是2的幂)
- a[n], a[m] -> a[n + m]是简单的(n是2的幂,且m小于n)
当然,有一个更强的性质会使问题简化(它是上面条件的充分条件,但不是必要的)
a[n], a[m] -> a[n + m]是简单的(m, n为任意正整数)
算法构造
首先考虑到因为性质1,所以,在已知a[1]推a[n]是非常简单的(其中n是2的幂)。
其次,假设我们已经知道a[1]~a[n-1]的所有值,依赖性质2,我们可以轻易的把这些和a[n]合并,然后得到a[n + m]的值。于是,我们获得了a[1]~a[2n - 1]的所有值。
注意到我们有a[1]所以,我们能对整个序列产生一个覆盖。
接下去我们构造算法,来求特定的位置的a[p]
- 假设p = n + m,n是不大于p的最大的2的幂,我们要做的只是求a[n]和a[m]。m大小的子问题和p大小的问题只在规模上存在不同。问题很快被递归到二进制低位
- 现在我们倒过来,你懂的。按照二进制展开逐位往高位递推(而且,我们在递推过程中逐位生成了a[n],n是二的幂,真是一举两得)。
再给张图片,方便大家理解,推导规模为1101的情况
时间效率分析
这个还是依赖于合并和地推的效率的,如果性质1和2的效率是O(1)的,那么,最终效率就是O(lgn),这个效率已经达到了信息量上的线性,单从界的角度已经是最好的了。
实例
逐次平方求幂,移位乘法,等比前n项和等各种都可以用这种方法构造,效率就不用多说了,时间O(lgn),空间O(1)
组合数取模总结
组合数取模,其实实际用途不大。。好吧,acm老喜欢出这样的题目,因为数据可能很大。。
以下给出第一个约分版本的组合数取模,能够处理当C(n,m) mod s当m不是很大的情况,有很多优化,先给代码吧^^
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | |
思路很直接——约分,基于这个公式,直接吧分子全部保存在一个数组里,然后用下面的数不断gcd,约去公因子,直到去约的数成为1,即下面所有的数都成为1。注意我加了一个优化——把分子和分母尽可能合并,以减少gcd运行的次数,这是一种贪心的策略。
基于以下的问题:给定若干容器,每个里面存放了一个数,每个有一个容量的上限。规定一次合并操作——把两个容器合并为一个,但是其中保存的数为两个数的乘积。求若干合并之后,容器总数最少。
策略:先排序,然后从最大的数开始,找最小的数和它乘,看有没有溢出,没有就合并这两个数,并且“删掉”最小的,用新的最小的数重复刚才的过程(和选定的那个大的数相乘),否则取次大的,不断进行这个过程,直到到达序列末。不难证明它是最优的。基于这个优化,在m不是很大的时候(一般不超过100),这个算法是接近线性(O(m))的,joj 2606就是这么被我优化到0.00s的^^
第二个版本,使用素数分解约分,这个版本很快,估计应该是亚线性的,但它不能处理n非常大的情况,一般能够处理n在最大1000000左右的情况,并且需要用到素数表。基于以下公式:,先贴代码^^
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | |
这个基本没啥好说的,都比较直接,有一点要提一下:m!中素因子p的数目,求法:m不断除p,除的结果不断加到一个变量保存,当m为0的时候,那个保存的结果即所求(第9,12,15行都是这个过程),如果你大脑能作一个数域的映射的话,这个是显然的,当然你也可以技巧性的通过公式变形得到,具体就不解释了^^
接下去介绍一个线性O(m)的方法,简单的说,就是把模数分解,然后同余方程组合并,这里给出模素数p的情况和模素数的乘方的情况
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | |
这个原理不难,就是分子分母分别对p取模,然后求逆。。当然,需要注意可能的退化情况。
假设分母为b,分子是a,则最后需要求的x值。
注意,如果b和p有大于1的公因子,会有多解,这个就是退化情况,所有在过程中需要不断抽取b中p的因子,抽取之后再不断取模,这样就可以了。
当然,因为a中相应的要约去b中被抽取的因子(这些都被一些临时变量保存),所以a也要抽取p的因子(需要注意的是,乘了再约和约了再乘是不一样的,前者会导致失真)
当然,上面是通过同余方程组,不用同余方程组的话,可以得到一个m*lgn的算法,不断抽取模数m的因子^^,也给出代码吧,因为没有同余方程组,实现稍简单一些,如果要求不是太高,也可以用
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | |
最后,是一个我还没完全参透的定理:Lucas定理,具体可以参看wiki,目前还不太清楚能不能处理p的乘方(要是能就好了^^),慢慢研究吧
1 2 3 4 5 6 7 8 9 10 11 | |
素数筛法 Sieve Method
前段时间学会了一个线性筛法,这个算法居然是O(n)的,确实令人震惊。而且更棒的是,它还为处理基于素因子分解的积性函数,提供了线性的筛法
先贴一下代码吧^^
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
算法的思路是这样的:总是使用能整除合数的最小素因子,筛去合数。注意第12行,这句话保证i不被任何比prime[j]小的素数整除,对于i*prime[j](这个j包括比当前条件成立的j更小的j),它的最小素因子显然就是prime[j]。注意,筛去合数的,总是该合数的最小素因子和与之对应的另一个因子i,所以它只会被筛一次^^
类似的可以得到很多积性以及“和性”的函数值,比如欧拉phi函数,sigma函数(n的所有因数和),还有n的所有因子的个数,等等等等。。。
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | |
注意:得到的是从1~N之间所有数的对应函数值,而且这上面的每一个函数,都能顺便产生一个对应素数表。用一个50000大小的表,你就能处理50000的平方大小的数的对应函数值了^^