FZU 2140 Forever 0.5(构造)

原创 2016年06月01日 17:22:01

Forever 0.5

Description

Given an integer N, your task is to judge whether there exist N points in the plane such that satisfy the following conditions:

1. The distance between any two points is no greater than 1.0.

2. The distance between any point and the origin (0,0) is no greater than 1.0.

3. There are exactly N pairs of the points that their distance is exactly 1.0.

4. The area of the convex hull constituted by these N points is no less than 0.5.

5. The area of the convex hull constituted by these N points is no greater than 0.75.

Input

The first line of the date is an integer T, which is the number of the text cases.

Then T cases follow, each contains an integer N described above.

1 <= T <= 100, 1 <= N <= 100

Output

For each case, output “Yes” if this kind of set of points exists, then output N lines described these N points with its coordinate. Make true that each coordinate of your output should be a real number with AT MOST 6 digits after decimal point.

Your answer will be accepted if your absolute error for each number is no more than 10-4.

Otherwise just output “No”.

See the sample input and output for more details.

Sample Input

3235

Sample Output

NoNoYes0.000000 0.525731-0.500000 0.162460-0.309017 -0.4253250.309017 -0.4253250.500000 0.162460

Hint

This problem is special judge.


解题思路:

有n个点,要求:

1.任意两点的距离≤ 1.0

2.每个点与原点的距离≤1.0

3.有N对点间的距离=1.0

4.N个点形成的面积≥0.5且≤0.75

可以先取一个以原点为顶点,另外两个点在单位圆上的正三角形


其他的点就在圆弧BC上,将BC等分即可。

由于只有三个点时,并不符合面积要求。因此至少需要四个点。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

const double pi = acos(-1.0);

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        int n;
        scanf("%d",&n);
        if(n < 4)
            puts("No");
        else{
            puts("Yes");
            printf("%.6lf %.6lf\n",0.0,0.0);
            printf("%.6lf %.6lf\n",1.0,0.0);
            printf("%.6lf %.6lf\n",0.5,sqrt(3.0)/2.0);
            double angle;
            for(int i = 1; i <= n-3; ++i){
                angle = (pi/3.0/(n-2))*i;
                double x = cos(angle);
                double y = sqrt(1-x*x);
                printf("%.6lf %.6lf\n",x,y);
            }
        }
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

FZU OJ 2140 Forever 0.5 (几何)

Problem 2140 Forever 0.5 Accept: 269    Submit: 934    Special Judge Time Limit: 1000 mSec  ...

FZU 2140 Forever 0.5

A - Forever 0.5 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64...

FZU-2140-Forever 0.5

FZU-2140-Forever 0.5

FOJ_2140_Forever 0.5_手动构造

新学期第一场组队比赛,打得还不错 题意: 给一个整数 N,判断是否在笛卡尔坐标系内存在这样的N个点,满足下面的条件: 1. 任意两个点的距离不大于1 2. 任意一个点和原点的距离不大于1 3. 有...

ACM--数学几何--2140 Forever 0.5--水

OJ地址:http://acm.fzu.edu.cn/problem.php?pid=2140 Problem 2140 Forever 0.5 Accept: 379    Submit: 1...

如何构造具有在线效果的无限压力(试验采用的tcpcopy为0.5以下的老版本)

我们做一个实验,在这个实验中,我们有四台机器,208,217,148,161,其中208和217在北京,148和161在杭州。 我们在208中利用压力测试工具发起压力请求到217中去,在217上利用...

fzu1911 (Construct a Matrix) 矩阵快速幂+构造

Construct a Matrix Time Limit: 1000ms Case Time Limit: 1000ms Memory Limit: 32768KB Special Judge ...

My Sweet Forever

  • 2014-06-11 23:49
  • 7.48MB
  • 下载

BZOJ2140: 稳定婚姻 Tarjan求无向图强联通分量

bzoj2140 稳定婚姻
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)