Given a string, find the length of the longest substring without repeating characters. For example, the longest substring without repeating letters for "abcabcbb" is "abc", which the length is 3. For "bbbbb" the longest substring is "b", with the length of 1.
» Solve this problem
O(n2)的解法是最为直接的:
1.枚举每一个子串;
2.扫描子串,求出满足题意的最长长度。
int max = 0;
char *t;
for (int i = 0; i < s.size(); i++) {
t = &s[i];
int j = 0;
while (j < t的长度 && t[j]没有在子串t中出现过) {
j++;
}
if (j > max) {
max = j;
}
}
其实,这里很多工作都是重复的、无用的。
看一个例子:
S="abbdeca"。
t1="abbdeca",t1[1]==t1[2]。
t2="bbdeca",t2[0]==t2[1]。
t3="bdeca",一直扫描到最后。
t4="deca"、t5、t6、t7都同上。
我们在处理t1的时候已经扫描到了s[2],然后处理t3的时候扫描了s[2]到s[6],这两个子串已经扫描完了整个母串。
换言之,能使得子串停止扫描的位置只有两处:1.s[2];2.s[6](结尾)。
对于另一个例子S="aaab",能使子串停止扫描的位置分别是:s[1],s[2],s[3](结尾)。
所以我们可以考虑只扫描母串,直接从母串中取出最长的无重复子串。
对于s[i]:
1.s[i]没有在当前子串中出现过,那么子串的长度加1;
2.s[i]在当前子串中出现过,出现位置的下标为j,那么新子串的起始位置必须大于j,为了使新子串尽可能的长,所以起始位置选为j+1。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int max = 0;
// 记录子串起始位置的前一个位置的下标
// 初始化为-1
int idx = -1;
// 记录字符在s中出现的位置
int locs[256];
memset(locs, -1, sizeof(int) * 256);
for (int i = 0; i < s.size(); i++) {
// 如果s[i]在当前子串中出现过
if (locs[s[i]] > idx) {
// 新子串的起始位置设为s[i]出现的位置+1
// P.S. idx是记录起始位置的前一个位置的下标
idx = locs[s[i]];
}
// 如果当前子串的长度大于最大值
if (i - idx > max) {
max = i - idx;
}
// 更新字符s[i]出现的位置
locs[s[i]] = i;
}
return max;
}
};