Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
» Solve this problem
在有序数组中查询一个值,二分法是一个通用解法。
但是此题的对有序数组进行了一个操作,使得原有序数组分成了两个部分。
原有序数组
A[0] < A[1] < A[2] < A[3] < A[4] < ... < A[N - 1]
Rotated后:
A[i] < A[i + 1] < ... < A[N - 1] > A[0] < A[1] < ... < A[i - 1]
方法依旧采用二分,假设现在我们要在A[l] ... A[r]中查询target。
1.A[l] < A[r],说明A[l] < A[l + 1] < A[l + 2] < ... < A[r]是一个部分有序数组,可以直接采用二分查询;
2.A[l] > A[r],说明存在一个k,使得A[l]到A[k],A[k+1]到A[r]为两个有序数组,此时我们还是用二分处理:
假设:mid = (l + r) / 2
如果A[mid] == target,则找到了target,否则在A[l]到A[mid - 1]与A[mid + 1]到A[r]两个部分搜寻目标值。
class Solution {
public:
int search(int A[], int n, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
return find(A, 0, n - 1, target);
}
private:
int find(int A[], int l, int r, int target) {
if (l > r) {
return -1;
}
int idx = -1;
if (A[l] <= A[r]) {
int left = l, right = r, mid = 0;
while (left <= right) {
mid = (left + right) >> 1;
if (A[mid] == target) {
idx = mid;
break;
}
else if (A[mid] > target) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
}
else {
int mid = (l + r) >> 1;
if (A[mid] == target) {
idx = mid;
}
else {
idx = find(A, l, mid - 1, target);
idx = idx == -1 ? find(A, mid + 1, r, target) : idx;
}
}
return idx;
}
};