114人阅读 评论(0)

# CodeForces 595B Pasha and Phone

Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u

## Description

Pasha has recently bought a new phone jPager and started adding his friends’ phone numbers there. Each phone number consists of exactly n digits.

Also Pasha has a number k and two sequences of length n / k (n is divisible by k) a1,a2,...,an/k$a_{1}, a_{2}, ...,a_{n} / k$ and b1,b2,...,bn/k$b_{1},b_{2}, ...,b_{n} / k$. Let’s split the phone number into blocks of length k. The first block will be formed by digits from the phone number that are on positions 1, 2,…, k, the second block will be formed by digits from the phone number that are on positions k + 1, k + 2, …, 2·k and so on. Pasha considers a phone number good, if the i-th block doesn’t start from the digit bi$b_{i}$ and is divisible by ai$a_{i}$ if represented as an integer.

To represent the block of length k as an integer, let’s write it out as a sequence c1$c_{1}$, c2$c_{2}$,…,ck$c_{k}$. Then the integer is calculated as the result of the expression c110k1+c210k2+ck$c_{1}·10^{k-1}+c_{2}·10^{k-2}+…c_{k}$.

Pasha asks you to calculate the number of good phone numbers of length n, for the given k, ai and bi. As this number can be too big, print it modulo 109+7$10^{9}+7$.

## Input

The first line of the input contains two integers n and k (1 ≤ n ≤ 100 000, 1 ≤ k ≤ min(n, 9)) — the length of all phone numbers and the length of each block, respectively. It is guaranteed that n is divisible by k.

The second line of the input contains n / k space-separated positive integers — sequence a1,a2,...,an/k$a_{1}, a_{2}, ...,a_{n} / k$ (1 ≤ ai$a_{i}$< 10k).

The third line of the input contains n / k space-separated positive integers — sequence b1,b2,...,bn/k$b_{1},b_{2}, ...,b_{n} / k$ (0 ≤bi$b_{i}$ ≤ 9).

## Output

Print a single integer — the number of good phone numbers of length n modulo 109+7$10^{9}+7$.

Sample Input

6 2
38 56 49
7 3 4

8

8 2
1 22 3 44
5 4 3 2

32400

## Hint

In the first test sample good phone numbers are: 000000, 000098, 005600, 005698, 380000, 380098, 385600, 385698

1. 第i份是ai$a_{i}$的倍数；
2. 第i份不能是以bi$b_{i}$开头的数；

#include<stdio.h>
#define mod 1000000007
int a[100005];
int b[100005];
int ans[100005];
long long mypow(int a,int b)
{
long long ans=1;
for(int i=0; i<b; i++)
ans*=10;
return ans;
}
int main()
{
int n,k;
while(~scanf("%d %d",&n,&k))
{
for(int i=0; i<n/k; i++)
scanf("%d",&a[i]);
for(int i=0; i<n/k; i++)
scanf("%d",&b[i]);
for(int i=0; i<n/k; i++)
{
if(b[i]==0)
{
ans[i]+=((mypow(10,k)-1)/a[i])+1;
ans[i]-=(mypow(10,k-1)-1)/a[i]+1;
}
else
{
ans[i]+=((mypow(10,k)-1)/a[i])+1;
ans[i]-=(mypow(10,k-1)*(b[i]+1)-1)/a[i]-(mypow(10,k-1)*(b[i])-1)/a[i];
}
}
long long ans2=1;
for(int i=0; i<n/k; i++)
{
ans2*=ans[i];
ans2%=mod;
}
printf("%lld\n",ans2);
}
return 0;
}

1
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：8753次
• 积分：418
• 等级：
• 排名：千里之外
• 原创：32篇
• 转载：0篇
• 译文：0篇
• 评论：1条
阅读排行
友情链接