numpy教程:排序、搜索和计数

http://blog.csdn.net/pipisorry/article/details/51822775numpy排序、搜索和计数函数和方法。(重新整合过的)排序Sortingsort(a[, axis, kind, order])Return a sorted copy of an array.lexsort(keys[, axis])Perform an indirect sort us...
阅读(26179) 评论(2)

numpy教程:快速傅里叶变换模块numpy.fft

http://blog.csdn.net/pipisorry/article/details/51050297 快速傅里叶变换 NumPy中,fft模块提供了快速傅里叶变换的功能。在这个模块中,许多函数都是成对存在的,也就是说许多函数存在对应的逆操作函数。例如,fft和ifft函数就是其中的一对。 import numpy as np from matplotlib.pyplot...
阅读(15476) 评论(3)

numpy教程:矩阵matrix及其运算

NumPy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素。虽然它们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中NumPy函数库中的matrix与MATLAB中matrices等价。 Matrix objects矩阵对象 创建示例 >>> a = np.matrix(’1 2; 3 4’) >>> p...
阅读(10319) 评论(0)

numpy教程:统计函数Statistics

http://blog.csdn.net/pipisorry/article/details/48770785 lz总结的一般统计函数 np.unique() 返冋其参数数组中所有不同的值,并且按照从小到大的顺序排列。它有两个可选参数: return_index : Ture表示同时返回原始数组中的下标。 Return_inverse: True表示返冋重建原始数组用的下标数组。...
阅读(7940) 评论(0)

numpy教程:逻辑函数Logic functions

http://blog.csdn.net/pipisorry/article/details/48208433真值测试Truth value testingall(a[, axis, out, keepdims])Test whether all array elements along a given axis evaluate to True.any(a[, axis, out, keepdi...
阅读(3100) 评论(0)

numpy线性代数基础 - Python和MATLAB矩阵处理的不同

http://blog.csdn.net/pipisorry/article/details/39087583 在介绍工具之前先对理论基础进行必要的回顾是很必要的。没有理论的基础,讲再多的应用都是空中楼阁。本文主要设涉及线性代数和矩阵论的基本内容。先回顾这部分理论基础,然后给出MATLAB,继而给出Python的处理。个人感觉,因为Python是面向对象的,操纵起来会更接近人的正常思维;...
阅读(3832) 评论(0)

numpy教程:数学函数和基本统计函数

http://blog.csdn.net/pipisorry/article/details/39235767 numpy数学函数 NumPy提供常见的如sin,cos和exp 更多函数all, alltrue, any, apply along axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, con...
阅读(9939) 评论(0)

numpy教程:随机数模块numpy.random

http://blog.csdn.net/pipisorry/article/details/39508417随机数种子RandomStateRandomState exposes a number of methods for generating random numbersdrawn from a variety of probability distributions.使用示例prng =...
阅读(41889) 评论(2)

numpy教程:数组操作

http://blog.csdn.net/pipisorry/article/details/39496831Array manipulation routinesnumpy数组基本操作,包括copy, shape, 转换(类型转换), type, 重塑等等。这些操作应该都可以使用numpy.fun(array)或者array.fun()来调用。Basic operationscopyto(dst...
阅读(6510) 评论(0)

numpy教程:数组创建

http://blog.csdn.net/pipisorry/article/details/39406501 Array creation routines There are 5 general mechanisms for creating arrays: Conversion from other Python structures (e.g., lists, tuples)In...
阅读(13393) 评论(1)

numpy教程:函数库和ufunc函数

http://blog.csdn.net/pipisorry/article/details/39235753numpy函数库:对数组进行处理ufunc函数: ufunc是universal function的缩写,它是一种能对数组的每个元素进行操作的函数。NumPy内置的许多ufunc函数都是在C语言级别实现的,因此它们的计算速度非常快。numpy函数和方法(method)总览创建数组arang...
阅读(5993) 评论(2)

numpy教程:ndarray属性、内建函数及其运算、迭代

http://blog.csdn.net/pipisorry/article/details/22107553array对象属性及内建方法数组属性The following attributes contain information about the memory layoutof the array:ndarray.flagsInformation about the memory layo...
阅读(7480) 评论(2)

numpy教程:numpy基本数据类型及多维数组元素存取

http://blog.csdn.net/pipisorry/article/details/39215089NumPy介绍Numpy(读作num-pie)是Python中的一个矩阵计算包,功能类似于MATLAB的矩阵计算。标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3...
阅读(18578) 评论(3)

numpy教程:基本输入输出和文件输入输出Input and output

http://blog.csdn.net/pipisorry/article/details/39088003 基本输入输出和文件输入输出文件名和文件对象本节介绍所举的例子都是传递的文件名,也可以传递已经打开的文件对象.例如对于load和save函数来说,如果使用文件对象的话,可以将多个数组储存到一个npy文件中:>>> a = np.arange(8) >>> b = np.add.accumu...
阅读(28270) 评论(0)

numpy性能优化

http://blog.csdn.net/pipisorry/article/details/39087583 Introduction NumPy提供了一个特殊的数据类型ndarray,其在向量计算上做了优化。这个对象是科学数值计算中大多数算法的核心。 相比于原生的Python,利用NumPy数组可以获得显著的性能加速,尤其是当你的计算遵循单指令多数据流(SIMD)范式时。 然而...
阅读(2561) 评论(0)
    个人资料
    • 访问:2943807次
    • 积分:27366
    • 等级:
    • 排名:第226名
    • 原创:556篇
    • 转载:30篇
    • 译文:5篇
    • 评论:258条
    Welcome to 皮皮blog~

    博客专栏
    最新评论