有放回采样和无放回采样

随机采样可以分为随机欠采样和随机过采样两种类型。随机欠采样顾名思义即从多数类$S_maj$中随机选择少量样本$E$再合并原有少数类样本作为新的训练数据集,新数据集为$S_min+E$;随机欠采样有两种类型分别为有放回和无放回两种,无放回欠采样在对多数类某样本被采样后不会再被重复采样,有放回采样则有可能。放回子采样:bagging(bootstrap aggregation)方法{有放回的随机采样,...
阅读(74) 评论(0)

随机采样和随机模拟:吉布斯采样Gibbs Sampling

http://blog.csdn.net/pipisorry/article/details/51373090 马氏链收敛定理 马氏链定理: 如果一个非周期马氏链具有转移概率矩阵P,且它的任何两个状态是连通的,那么limn→∞Pnij 存在且与i无关,记limn→∞Pnij=π(j), 我们有 limn→∞Pn=⎡⎣⎢⎢⎢⎢⎢π(1)π(1)⋯π(1)⋯π(2)π(2)⋯...
阅读(22632) 评论(2)

随机采样和随机模拟

http://blog.csdn.net/pipisorry/article/details/50615652 随机采样方法 模拟方法:是一种基于“随机数”的计算方法,基于数值采样的近似推断方法,也被称为蒙特卡罗( MonteCarlo )方法、随机模拟方法。 通常均匀分布Uniform(0,1)    的样本,即我们熟悉的类rand()函数,可以由线性同余发生器生成;而其他的随机分...
阅读(2720) 评论(0)

马尔科夫模型

http://blog.csdn.net/pipisorry/article/details/46618991 马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。 考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是 {S1,S2,S3,...SN}。我们现在用q1,q2,q3,…qn来表示系统在t=1,2,3,…n时刻下的状态。在t=1时,系...
阅读(5454) 评论(0)
    个人资料
    • 访问:2595735次
    • 积分:25335
    • 等级:
    • 排名:第248名
    • 原创:534篇
    • 转载:30篇
    • 译文:5篇
    • 评论:245条
    Welcome to 皮皮blog~

    博客专栏
    最新评论