当前搜索:

深度学习:语言模型的评估标准

http://blog.csdn.net/pipisorry/article/details/78677580 语言模型的评估主要measure the closeness,即生成语言和真实语言的近似度。 Classification accuracy provides additional information about the po...
阅读(131) 评论(0)

深度学习:词嵌入word2vec

http://blog.csdn.net/pipisorry/article/details/76147604 word2vec简介 深度学习在自然语言处理中第一个应用:训练词嵌入。通过词嵌入的词表示方式,大量的nlp领域的任务都得到了提升。Google 的 Tomas Mikolov 在《Efficient Estimation of Word Representation ...
阅读(239) 评论(0)

最大熵模型:学习

http://blog.csdn.net/pipisorry/article/details/52791036最大熵模型的学习最大熵模型具体形式的推导+参数w的学习。最大熵模型学习的思路根据前面说的最大熵模型的定义形式最大熵模型学习的具体推导Note: 通过交换极大极小位置,即得其对偶问题。求解内部极小化问题:求解p(y|x)的具体形式 从式6.22中可以看出,通过式6.22可以进行最大熵分类(x...
阅读(1726) 评论(0)

最大熵模型The Maximum Entropy:模型

http://blog.csdn.net/pipisorry/article/details/52789149最大熵模型相关的基础知识[概率论:基本概念CDF、PDF ]熵定义为:   [信息论:熵与互信息 ][最优化方法:拉格朗日乘数法 ][参数估计:贝叶斯思想和贝叶斯参数估计...
阅读(1761) 评论(9)

HMM:隐马尔科夫模型 - 预测和解码

http://blog.csdn.net/pipisorry/article/details/50731584观察序列生成计算观察序列的概率(Finding the probability of an observed sequence)  给定隐马尔科夫模型,也就是在模型参数(pi, A, B)已知的情况下,我们想找到观察序列的概率。还是考虑天气这个例子,我们有一个用来描述天气及与它密切相关的海...
阅读(858) 评论(0)

HMM:隐马尔科夫模型 - 学习

http://blog.csdn.net/pipisorry/article/details/50722376隐马尔科夫模型的三个问题例子举个常见的例子来引出下文,同时方便大家理解!比如我在不同天气状态下去做一些事情的概率不同,天气状态集合为{下雨,阴天,晴天},事情集合为{宅着,自习,游玩}。假如我们已经有了转移概率和输出概率,即P(天气A|天气B)和P(事情a|天气A)的概率都已知道,那么则有...
阅读(1311) 评论(0)

HMM:隐马尔可夫模型 - 表示

http://blog.csdn.net/pipisorry/article/details/50722178隐马尔可夫模型 Hidden Markov Models隐马尔可夫模型(Hidden Markov Models, HMM)描述由一个隐藏的马尔可夫链随机生成的不可观测的状态序列,再由各个状态生成一个观测而产生观测随机序列的过程,属于生成模型。隐马尔科夫模型可以被看成状态空间模型[顺序数据...
阅读(4143) 评论(0)

LTP语法分析

POS词性标注解释 Tag Description Example a adjective 美丽 b other noun-modifier 大型, 西式 c conjunction连词 和, 虽然 d adverb 很 e exclamation惊叹词 哎 g morpheme形态素; 词素 茨, 甥 h prefix 阿, 伪 i idiomidiom...
阅读(1331) 评论(0)

中文句法分析

中文语法 音节 ... 词 词是由语素组成的最小的造句单位。从构成方式来看,可以分成:单纯词和合成词。从词性来看,可以分成:实词和虚词。 单纯词 由一个语素组成的词,自由的单音节语素和所有的双音节、多音节语素都可以组成单纯词。如:山、水、天、地、人、有、土、红、凑;仿佛、苍茫、蜈蚣、琉璃、参差、蹉跎;敌敌畏、阿司匹林、萨克斯、麦克风等。 合成词 由两个或两个以上的语...
阅读(4108) 评论(0)

马尔科夫模型 Markov Model

http://blog.csdn.net/pipisorry/article/details/46618991生成模式(Generating Patterns)1、确定性模式(Deterministic Patterns):确定性系统  考虑一套交通信号灯,灯的颜色变化序列依次是红色-红色/黄色-绿色-黄色-红色。这个序列可以作为一个状态机器,交通信号灯的不同状态都紧跟着上一个状态。      注...
阅读(7966) 评论(0)

python中文分词工具:结巴分词jieba

http://blog.csdn.net/pipisorry/article/details/45311229结巴分词jieba特点    支持三种分词模式:        精确模式,试图将句子最精确地切开,适合文本分析;        全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;        搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合...
阅读(4092) 评论(0)

Stanford Parser的使用——进行词法语法分析

http://blog.csdn.net/pipisorry/article/details/42976457 stanford-parser的使用 1、到斯坦福官方网站http://nlp.stanford.edu/software/lex-parser.shtml下载软件包,解压。 2、在eclipse中新建一个java project,把解压得到根目录下的sta...
阅读(11027) 评论(0)

Stanford Parser demo错误:Unsupported major.minor version 52.0 error

运行Stanford Parser demo时出现错误: Unsupported major.minor version 52.0 error 出现问题原因: JDK的问题:在eclipse中开发的项目有个java build path中可以配置的jdk,还有个java compiler中可以配置compiler level{eclipse>windows>preferenc...
阅读(49646) 评论(2)
    个人资料
    • 访问:3148946次
    • 积分:28341
    • 等级:
    • 排名:第214名
    • 原创:557篇
    • 转载:30篇
    • 译文:5篇
    • 评论:284条
    Welcome to 皮皮blog~

    博客专栏
    最新评论