推荐系统:协同过滤collaborative filtering

http://blog.csdn.net/pipisorry/article/details/51788955(个性化)推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐。这篇博客主要讲协同过滤。协同过滤Collaborative Filtering协同过滤:使用...
阅读(14722) 评论(7)

海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis

海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis {博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, l...
阅读(1217) 评论(0)

PCA数据降维

http://blog.csdn.net/pipisorry/article/details/49235529 这个没时间写,下次有空写吧╮(╯_╰)╭ from: http://blog.csdn.net/pipisorry/article/details/49235529 ref:...
阅读(836) 评论(0)

海量数据挖掘MMDS week4: 推荐系统之数据降维Dimensionality Reduction

http://blog.csdn.net/pipisorry/article/details/49231919 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之降维Dimensionality Reduction {博客内容:推荐系统有一种推荐称作隐语义模型...
阅读(1443) 评论(0)

推荐系统:基于内容的推荐

http://blog.csdn.net/pipisorry/article/details/49205589(个性化)推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐。这篇博客主要讲基于内容的推荐content-based。基于内容的推荐Content-bas...
阅读(2736) 评论(0)

距离和相似度度量方法

http://blog.csdn.net/pipisorry/article/details/45651315在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚类算法,如 K 最近邻(KNN)和 K 均值(K-Means)等等。根据数据特性的不同,可以采用不同的度量方法。一般而言,定义一个距离函数 d(x,y)...
阅读(11288) 评论(0)

推荐系统:参数协同过滤

http://blog.csdn.net/pipisorry/article/details/44850971机器学习Machine Learning - Andrew NG courses学习笔记。Machine Learning - XVI. Recommender Systems 推荐系统(Week 9)相关参考:基于内容的推荐[推荐系统:基于内容的推荐]和基于cosin相似度的非参数协同过...
阅读(5519) 评论(0)

推荐系统:非个性化推荐Non-personalized recommendation

http://blog.csdn.net/pipisorry/article/details/39507699推荐系统之非个性化推荐Non-personalized recommendation,主要包含aggregated opinion recommenders,产品关联推荐,时间敏感推荐。个性化推荐参考[推荐系统:个性化推荐-协同过滤 ][海量数据挖掘M...
阅读(3716) 评论(1)

推荐系统Recommendation System:综述

http://blog.csdn.net/pipisorry/article/details/36633451博客内容:(个性化)推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐非个性化推荐[推荐系统:非个性化推荐Non-personalized recomme...
阅读(1370) 评论(0)
    个人资料
    • 访问:2595740次
    • 积分:25335
    • 等级:
    • 排名:第248名
    • 原创:534篇
    • 转载:30篇
    • 译文:5篇
    • 评论:245条
    Welcome to 皮皮blog~

    博客专栏
    最新评论