当前搜索:

集成方法:渐进梯度回归树GBRT(迭代决策树)

http://blog.csdn.net/pipisorry/article/details/60776803单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF。在最近几年的paper上,如iccv这种重量级会议,iccv 09年的里面有不少文章都是与Boosting和随...
阅读(3727) 评论(0)

最大熵模型:学习

http://blog.csdn.net/pipisorry/article/details/52791036最大熵模型的学习最大熵模型具体形式的推导+参数w的学习。最大熵模型学习的思路根据前面说的最大熵模型的定义形式最大熵模型学习的具体推导Note: 通过交换极大极小位置,即得其对偶问题。求解内部极小化问题:求解p(y|x)的具体形式 从式6.22中可以看出,通过式6.22可以进行最大熵分类(x...
阅读(1726) 评论(0)

最大熵模型The Maximum Entropy:模型

http://blog.csdn.net/pipisorry/article/details/52789149最大熵模型相关的基础知识[概率论:基本概念CDF、PDF ]熵定义为:   [信息论:熵与互信息 ][最优化方法:拉格朗日乘数法 ][参数估计:贝叶斯思想和贝叶斯参数估计...
阅读(1761) 评论(9)

对数线性模型:逻辑斯谛回归和最大熵模型

http://blog.csdn.net/pipisorry/article/details/52788947对数线性模型log linear model对数线性模型有:最大熵模型和逻辑斯谛回归。特征和指示特征对数线性模型的一般形式[概率图模型原理与技术]某小皮对数线性模型的不同形式因子图将因子转换到对数空间,成为对数线性模型。[PGM:无向图模型:马尔可夫网...
阅读(1101) 评论(0)

“ 鸡尾酒会问题”(cocktail party problem)

Introduction“ 鸡尾酒会问题”(cocktail party problem)是在计算机语音识别领域的一个问题,当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。解决方案斯坦福大学的Andrew NG教授的机器学习公开课(http://v.163.com/special/opencourse/m...
阅读(737) 评论(0)

分类模型评估之ROC-AUC曲线和PRC曲线

http://blog.csdn.net/pipisorry/article/details/51788927ROC曲线和AUCROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算A...
阅读(8261) 评论(2)

Machine Learning - XII. Support Vector Machines支持向量机(Week 7)

http://blog.csdn.net/pipisorry/article/details/44522881机器学习Machine Learning - Andrew NG courses学习笔记Support Vector Machines支持向量机{学习复杂非线性函数的有力方法}优化目标Optimization Objective逻辑回归SVM的Cost function另一个角度看待单个样...
阅读(2394) 评论(1)

Machine Learning - 神经网络的表示和学习 (Week 4 - 5)

http://blog.csdn.net/pipisorry/article/details/44119187机器学习Machine Learning - Andrew NG courses学习笔记Machine Learning - VIII. Neural Networks Representation神经网络的表示 (Week 4)Machine Learning - IX. Neural ...
阅读(3115) 评论(0)

Machine Learning - VI. Logistic Regression逻辑回归 (Week 3)

http://blog.csdn.net/pipisorry/article/details/43884027机器学习Machine Learning - Andrew NG courses学习笔记Logistic Regression逻辑回归{逻辑回归是一种线性分类模型,而不是回归模型。也就是说,输入的因变量target y是离散值,如分类类别1,0等等,而不是连续型的数据。}Classific...
阅读(3116) 评论(0)

AdaBoost的人脸识别—Haar特征与积分图

提到AdaBoost的人脸识别,不得不提的几篇大牛的文章可以看看,但是大牛的文章一般都是只有主要的算法框架,没有详细的说明。 大牛论文推荐: 1. Robust Real-time Object Detection, Paul Viola, Michael Jones 2. Rapid Object Detection using a Boosted Cascade of Simple Fe...
阅读(1853) 评论(0)

人脸检测-Haar分类器方法

浅析人脸检测之Haar分类器方法 一、Haar分类器的前世今生        人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。        目前的人脸检测方法主要有两大类:基于知识和基于统计。 Ø  基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根...
阅读(1579) 评论(0)

人脸检测和识别

http://blog.csdn.net/pipisorry/article/details/39899127人脸检测人脸检测-Haar分类器方法人脸检测—Haar特征与积分图python使用opencv进行人脸检测Python利用OpenCV实现人脸检测python+OpenCV进行人脸检测【转】浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联Facial Fe...
阅读(2204) 评论(0)

机器学习算法及其损失函数

http://blog.csdn.net/pipisorry/article/details/23538535监督学习及其目标函数      损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结...
阅读(3178) 评论(3)
    个人资料
    • 访问:3148946次
    • 积分:28341
    • 等级:
    • 排名:第214名
    • 原创:557篇
    • 转载:30篇
    • 译文:5篇
    • 评论:284条
    Welcome to 皮皮blog~

    博客专栏
    最新评论