pandas小记:pandas时间序列分析和处理Timeseries

http://blog.csdn.net/pipisorry/article/details/52209377

pandas 最基本的时间序列类型就是以时间戳(TimeStamp)为 index 元素的 Series 类型。

其它时间序列处理相关的包

[P4J 0.6: Periodic light curve analysis tools based on Information Theory]

[p4j github]

pandas时序数据文件读取

dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m')
data = pd.read_csv('AirPassengers.csv', parse_dates='Month', index_col='Month',date_parser=dateparse)
print data.head()

read_csv时序参数

parse_dates:这是指定含有时间数据信息的列。正如上面所说的,列的名称为“月份”。
index_col:使用pandas 的时间序列数据背后的关键思想是:目录成为描述时间数据信息的变量。所以该参数告诉pandas使用“月份”的列作为索引。
date_parser:指定将输入的字符串转换为可变的时间数据。Pandas默认的数据读取格式是‘YYYY-MM-DD HH:MM:SS’?如需要读取的数据没有默认的格式,就要人工定义。这和dataparse的功能部分相似,这里的定义可以为这一目的服务。The default uses dateutil.parser.parser to do the conversion.

[pandas.read_csv]

[python模块:时间处理模块]


时间序列分析和处理Time Series

pandas has simple, powerful, and efficient functionality for performingresampling operations during frequency conversion (e.g., converting secondlydata into 5-minutely data). This is extremely common in, but not limited to,financial applications.

时序数据生成和表示

c = pandas.Timestamp('2012-01-01 00:00:08')

In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [105]: ts.resample('5Min', how='sum')
Out[105]: 
2012-01-01    25083
Freq: 5T, dtype: int32

Time zone representation

In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [108]: ts
Out[108]: 
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D, dtype: float64

In [109]: ts_utc = ts.tz_localize('UTC')

In [110]: ts_utc
Out[110]: 
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D, dtype: float64

时序转换

Convert to another time zone

In [111]: ts_utc.tz_convert('US/Eastern')
Out[111]: 
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D, dtype: float64

Converting between time span representations

In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [114]: ts
Out[114]: 
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64

In [115]: ps = ts.to_period()
In [116]: ps
Out[116]: 
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64

In [117]: ps.to_timestamp()
Out[117]: 
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmeticfunctions to be used. In the following example, we convert a quarterlyfrequency with year ending in November to 9am of the end of the month followingthe quarter end:

In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [121]: ts.head()
Out[121]: 
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64

[pandas-docs/stable/timeseries]

[pandas cookbook Timeseries]

时序处理相关函数

 pandas.to_datetime(*args, **kwargs)

    Convert argument to datetime.

lz觉得此函数一般是对不明确类型进行转换,如果直接对datetime类型转换太慢不值得,有其它方法。

Series.dt.normalize(*args, **kwargs)
    Return DatetimeIndex with times to midnight. Length is unaltered.直接调用应该就是只取datetime的date部分,即重置time部分,而保持datetime类型不变。

DatetimeIndex.normalize()

        Return DatetimeIndex with times to midnight. Length is unaltered

DatetimeIndex相关的函数

Note: pandas时间序列series的index必须是DatetimeIndex不能是Index,也就是如果index是从dataframe列中转换来的,其类型必须是datetime类型,不能是date、object等等其它类型!否则在很多处理包中会报错。

ts.index

返回DatetimeIndex(['2015-07-02', '2015-07-03', '2015-07-04', '2015-07-05', ... '2016-10-26', '2016-10-27', '2016-10-28', '2016-10-29'],
              dtype='datetime64[ns]', name='time', length=481, freq=None)

说明index类型是DatetimeIndex没错,但是freq=None说明datetime的频率没有自动推断出来,这里看起来应该freq=1也就是一天。

freq也可以通过ts.index.inferred_freq查看

series对象的dt存取器 .dt accessor

Series.dt()
    Accessor object for datetimelike properties of the Series values.

示例

    s.dt.date

    >>> s.dt.hour
    >>> s.dt.second
    >>> s.dt.quarter
Returns a Series indexed like the original Series. Raises TypeError if the Series does not contain datetimelike values.

Series datetime类型处理

示例:将series中datetime类型只保留date部分而不改变数据类型,即数据类型仍为datetime

s.map(pd.Timestamp.date) 或者 s.map(lambda x: pd.to_datetime(x.date()))

但是pd.Timestamp.date会将数据的类型从datetime类型转换成date类型,在pd中显示是object类型;而转换成datetime的函数pd.to_datetime特别慢而耗时。

一个最好的转换方式是直接进行类型转换

Converting to datetime64[D]:df.dates.values.astype('M8[D]') Though re-assigning that to a DataFrame col will revert it back to [ns].

所以可以这样实现user_pay_df['time'] = user_pay_df['time'].dt.date.astype('M8[D]')

或者user_pay_df['time'] = user_pay_df['time'].dt.date.astype(np.datetime64)

不过这仍不是最快的方法,lz找到一个更快的方法

重置datetime的time部分

user_pay_df['time'] = user_pay_df['time'].dt.normalize()
[ Reset time part of a pandas timestamp]

[Keep only date part when using pandas.to_datetime]

        uid   sid                time
0  22127870  1862 2015-12-25 17:00:00
1   3434231  1862 2016-10-05 11:00:00
2  16955285  1862 2016-02-10 15:00:00
uid              int64
sid              int64
time    datetime64[ns]
dtype: object
        uid   sid       time
0  22127870  1862 2015-12-25
1   3434231  1862 2016-10-05
2  16955285  1862 2016-02-10
uid              int64
sid              int64
time    datetime64[ns]

皮皮blog



pandas时序类型

pandas 的 TimeStamp

pandas 最基本的时间日期对象是一个从 Series 派生出来的子类 TimeStamp,这个对象与 datetime 对象保有高度兼容性,可通过 pd.to_datetime() 函数转换。(一般是从 datetime 转换为 Timestamp)

lang:python
>>> pd.to_datetime(now)
Timestamp('2014-06-17 15:56:19.313193', tz=None)
>>> pd.to_datetime(np.nan)
NaT

pandas 的时间序列

pandas 最基本的时间序列类型就是以时间戳(TimeStamp)为 index 元素的 Series 类型。

lang:python
>>> dates = [datetime(2011,1,1),datetime(2011,1,2),datetime(2011,1,3)]
>>> ts = Series(np.random.randn(3),index=dates)
>>> ts
2011-01-01    0.362289
2011-01-02    0.586695
2011-01-03   -0.154522
dtype: float64
>>> type(ts)
<class 'pandas.core.series.Series'>
>>> ts.index
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01, ..., 2011-01-03]
Length: 3, Freq: None, Timezone: None
>>> ts.index[0]
Timestamp('2011-01-01 00:00:00', tz=None)

时间序列之间的算术运算会自动按时间对齐。

时间序列的索引、选取、子集构造

时间序列只是 index 比较特殊的 Series ,因此一般的索引操作对时间序列依然有效。其特别之处在于对时间序列索引的操作优化。

先在序列对象选择一个特殊值。可以通过以下两种方式实现:

1 使用各种字符串进行索引:

lang:python
>>> ts['20110101']
0.36228897878097266
>>> ts['2011-01-01']
0.36228897878097266
>>> ts['01/01/2011']
0.36228897878097266

2 Import the datetime library and use 'datetime' function:

from datetime import datetime
ts[datetime(1949,1,1)]
3 你需要1949年所有的值,可以这样做:ts['1949']。可见,月份部分已经省略。如果你要获得某月所有的日期,日期部分也可以省略。

对于较长的序列,还可以只传入 “年” 或 “年月” 选取切片:

>>> ts
2011-01-01    0.362289
2011-01-02    0.586695
2011-01-03   -0.154522
2012-12-25    0.111869
dtype: float64
>>> ts['2012']
2012-12-25    0.111869
dtype: float64
>>> ts['2011-1-2':'2012-12']
2011-01-02    0.586695
2011-01-03   -0.154522
2012-12-25    0.111869
dtype: float64

4 除了这种字符串切片方式外,还有一种实例方法可用:ts.truncate(after='2011-01-03')。

值得注意的是,切片时使用的字符串时间戳并不必存在于 index 之中,如 ts.truncate(before='3055') 也是合法的。

Time/Date Components

There are several time/date properties that one can access from Timestamp or a collection of timestamps like a DateTimeIndex.

PropertyDescription
yearThe year of the datetime
monthThe month of the datetime
dayThe days of the datetime
hourThe hour of the datetime
minuteThe minutes of the datetime
secondThe seconds of the datetime
microsecondThe microseconds of the datetime
nanosecondThe nanoseconds of the datetime
dateReturns datetime.date
timeReturns datetime.time
dayofyearThe ordinal day of year
weekofyearThe week ordinal of the year
weekThe week ordinal of the year
dayofweekThe numer of the day of the week with Monday=0, Sunday=6
weekdayThe number of the day of the week with Monday=0, Sunday=6
weekday_nameThe name of the day in a week (ex: Friday)
quarterQuarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc.
days_in_monthThe number of days in the month of the datetime
is_month_startLogical indicating if first day of month (defined by frequency)
is_month_endLogical indicating if last day of month (defined by frequency)
is_quarter_startLogical indicating if first day of quarter (defined by frequency)
is_quarter_endLogical indicating if last day of quarter (defined by frequency)
is_year_startLogical indicating if first day of year (defined by frequency)
is_year_endLogical indicating if last day of year (defined by frequency)

Furthermore, if you have a Series with datetimelike values, then you can access these properties via the .dt accessor, see the docs.

[Time/Date Components]

日期的范围、频率以及移动

pandas 中的时间序列一般被默认为不规则的,即没有固定的频率。但出于分析的需要,我们可以通过插值的方式将序列转换为具有固定频率的格式。一种快捷方式是使用 .resample(rule) 方法:

lang:python
>>> ts
2011-01-01    0.362289
2011-01-02    0.586695
2011-01-03   -0.154522
2011-01-06    0.222958
dtype: float64
>>> ts.resample('D')
2011-01-01    0.362289
2011-01-02    0.586695
2011-01-03   -0.154522
2011-01-04         NaN
2011-01-05         NaN
2011-01-06    0.222958
Freq: D, dtype: float64 


生成日期范围

pd.date_range() 可用于生成指定长度的 DatetimeIndex。参数可以是起始结束日期,或单给一个日期,加一个时间段参数。日期是包含的。

lang:python
>>> pd.date_range('20100101','20100110')
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-01-01, ..., 2010-01-10]
Length: 10, Freq: D, Timezone: None
>>> pd.date_range(start='20100101',periods=10)
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-01-01, ..., 2010-01-10]
Length: 10, Freq: D, Timezone: None
>>> pd.date_range(end='20100110',periods=10)
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-01-01, ..., 2010-01-10]
Length: 10, Freq: D, Timezone: None

默认情况下,date_range 会按天计算时间点。这可以通过 freq 参数进行更改,如 “BM” 代表 bussiness end of month。

lang:python
>>> pd.date_range('20100101','20100601',freq='BM')
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-01-29, ..., 2010-05-31]
Length: 5, Freq: BM, Timezone: None


频率和日期偏移量

pandas 中的频率是由一个基础频率和一个乘数组成的。基础频率通常以一个字符串别名表示,如上例中的 “BM”。对于每个基础频率,都有一个被称为日期偏移量(date offset)的对象与之对应。可以通过实例化日期偏移量来创建某种频率:

lang:python
>>> Hour()
<Hour>
>>> Hour(2)
<2 * Hours>
>>> Hour(1) + Minute(30)
<90 * Minutes>

但一般来说不必这么麻烦,使用前面提过的字符串别名来创建频率就可以了:

lang:python
>>> pd.date_range('00:00','12:00',freq='1h20min')
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-06-17 00:00:00, ..., 2014-06-17 12:00:00]
Length: 10, Freq: 80T, Timezone: None

可用的别名,可以通过 help() 或 文档来查询,这里就不写了。

移动(超前和滞后)数据

移动(shifting)指的是沿着时间轴将数据前移或后移。Series 和 DataFrame 都有一个 .shift() 方法用于执行单纯的移动操作,index 维持不变:

lang:python
>>> ts
2011-01-01    0.362289
2011-01-02    0.586695
2011-01-03   -0.154522
2011-01-06    0.222958
dtype: float64
>>> ts.shift(2)
2011-01-01         NaN
2011-01-02         NaN
2011-01-03    0.362289
2011-01-06    0.586695
dtype: float64
>>> ts.shift(-2)
2011-01-01   -0.154522
2011-01-02    0.222958
2011-01-03         NaN
2011-01-06         NaN
dtype: float64

上例中因为移动操作产生了 NA 值,另一种移动方法是移动 index,而保持数据不变。这种移动方法需要额外提供一个 freq 参数来指定移动的频率:

lang:python
>>> ts.shift(2,freq='D')
2011-01-03    0.362289
2011-01-04    0.586695
2011-01-05   -0.154522
2011-01-08    0.222958
dtype: float64
>>> ts.shift(2,freq='3D')
2011-01-07    0.362289
2011-01-08    0.586695
2011-01-09   -0.154522
2011-01-12    0.222958
dtype: float64

时期及其算术运算

本节使用的时期(period)概念不同于前面的时间戳(timestamp),指的是一个时间段。但在使用上并没有太多不同,pd.Period 类的构造函数仍需要一个时间戳,以及一个 freq 参数。freq 用于指明该 period 的长度,时间戳则说明该 period 在公园时间轴上的位置。

lang:python
>>> p = pd.Period(2010,freq='M')
>>> p
Period('2010-01', 'M')
>>> p + 2
Period('2010-03', 'M')

上例中我给 period 的构造器传了一个 “年” 单位的时间戳和一个 “Month” 的 freq,pandas 便自动把 2010 解释为了 2010-01。

period_range 函数可用于创建规则的时间范围:

lang:python
>>> pd.period_range('2010-01','2010-05',freq='M')
<class 'pandas.tseries.period.PeriodIndex'>
freq: M
[2010-01, ..., 2010-05]
length: 5

PeriodIndex 类保存了一组 period,它可以在任何 pandas 数据结构中被用作轴索引:

lang:python
>>> Series(np.random.randn(5),index=pd.period_range('201001','201005',freq='M'))
2010-01    0.755961
2010-02   -1.074492
2010-03   -0.379719
2010-04    0.153662
2010-05   -0.291157
Freq: M, dtype: float64


时期的频率转换

Period 和 PeriodIndex 对象都可以通过其 .asfreq(freq, method=None, how=None) 方法被转换成别的频率。

lang:python
>>> p = pd.Period('2007',freq='A-DEC')
>>> p.asfreq('M',how='start')
Period('2007-01', 'M')
>>> p.asfreq('M',how='end')
Period('2007-12', 'M')
>>> ts = Series(np.random.randn(1),index=[p])
>>> ts
2007   -0.112347
Freq: A-DEC, dtype: float64
>>> ts.asfreq('M',how='start')
2007-01   -0.112347
Freq: M, dtype: float64


时间戳与时期间相互转换

以时间戳和以时期为 index 的 Series 和 DataFrame 都有一对 .to_period() 和 to_timestamp(how='start') 方法用于互相转换 index 的类型。因为从 period 到 timestamp 的转换涉及到一个取端值的问题,所以需要一个额外的 how 参数,默认为 'start':

lang:python
>>> ts = Series(np.random.randn(5),index=pd.period_range('201001','201005',freq='M'))
>>> ts
2010-01   -0.312160
2010-02    0.962652
2010-03   -0.959478
2010-04    1.240236
2010-05   -0.916218
Freq: M, dtype: float64
>>> ts.to_timestamp()
2010-01-01   -0.312160
2010-02-01    0.962652
2010-03-01   -0.959478
2010-04-01    1.240236
2010-05-01   -0.916218
Freq: MS, dtype: float64
>>> ts.to_timestamp(how='end')
2010-01-31   -0.312160
2010-02-28    0.962652
2010-03-31   -0.959478
2010-04-30    1.240236
2010-05-31   -0.916218
Freq: M, dtype: float64
>>> ts.to_timestamp().to_period()
2010-01-01 00:00:00.000   -0.312160
2010-02-01 00:00:00.000    0.962652
2010-03-01 00:00:00.000   -0.959478
2010-04-01 00:00:00.000    1.240236
2010-05-01 00:00:00.000   -0.916218
Freq: L, dtype: float64
>>> ts.to_timestamp().to_period('M')
2010-01   -0.312160
2010-02    0.962652
2010-03   -0.959478
2010-04    1.240236
2010-05   -0.916218
Freq: M, dtype: float64


重采样及频率转换

重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的过程。pandas 对象都含有一个.resample(freq, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0) 方法用于实现这个过程。

本篇最前面曾用 resample 规整化过时间序列。当时进行的是插值操作,因为原索引的频率与给出的 freq 参数相同。resample 方法更多的应用场合是 freq 发生改变的时候,这时操作就分为升采样(upsampling)和降采样(downsampling)两种。具体的区别都体现在参数里。

lang:python
>>> ts
2010-01   -0.312160
2010-02    0.962652
2010-03   -0.959478
2010-04    1.240236
2010-05   -0.916218
Freq: M, dtype: float64
>>> ts.resample('D',fill_method='ffill')#升采样
2010-01-01   -0.31216
2010-01-02   -0.31216
2010-01-03   -0.31216
2010-01-04   -0.31216
2010-01-05   -0.31216
2010-01-06   -0.31216
2010-01-07   -0.31216
2010-01-08   -0.31216
2010-01-09   -0.31216
2010-01-10   -0.31216
2010-01-11   -0.31216
2010-01-12   -0.31216
2010-01-13   -0.31216
2010-01-14   -0.31216
2010-01-15   -0.31216
...
2010-05-17   -0.916218
2010-05-18   -0.916218
2010-05-19   -0.916218
2010-05-20   -0.916218
2010-05-21   -0.916218
2010-05-22   -0.916218
2010-05-23   -0.916218
2010-05-24   -0.916218
2010-05-25   -0.916218
2010-05-26   -0.916218
2010-05-27   -0.916218
2010-05-28   -0.916218
2010-05-29   -0.916218
2010-05-30   -0.916218
2010-05-31   -0.916218
Freq: D, Length: 151
>>> ts.resample('A-JAN',how='sum')#降采样
2010   -0.312160
2011    0.327191
Freq: A-JAN, dtype: float64

[pandas 时间序列操作]

from: http://blog.csdn.net/pipisorry/article/details/52209377

ref: [时间序列预测全攻略(附带Python代码)]

[概率论:假设检验-t检验和Augmented Dickey–Fuller test ]

[Complete guide to create a Time Series Forecast (with Codes in Python)]


  • 13
    点赞
  • 102
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: pandas是Python中一个非常强大的数据分析库,它提供了高效化运算和时间序列处理的功能。在数据分析中,我们经常需要对大量数据进行运算和处理pandas提供了很多高效的函数和方法,可以大大提高数据处理的效率。同时,pandas也提供了很多时间序列处理的功能,可以方便地对时间序列数据进行处理和分析。因此,pandas在数据分析中是一个非常重要的工具。 ### 回答2: Pandas是数据分析领域中常用的Python库之一,由于其强大的数据处理和分析能力,已经成为数据科学家的必备之选。 其中,Pandas高效化运算和时间序列处理是两个非常重要的功能,本文将就这两个方面进行详细介绍。 一、Pandas高效化运算 Pandas高效化运算主要涉及两个重要类对象:Series和DataFrame。 (1)Series高效化运算 Series是指一维带标签的数组,通常用于表示时间序列数据。在Pandas中,Series对象支持矢量化运算,因此可以实现高效的运算。 具体而言,Series支持诸如加、减、乘、除等数学运算,以及比较运算(例如大于、小于、等于等)。此外,Series还支持apply方法,它可以接受一个函数作为参数,并应用于Series的每个元素上。 (2)DataFrame高效化运算 DataFrame是指二维带标签的数据结构,通常用于表示表格型数据。在Pandas中,DataFrame也支持矢量化运算。可以对每一列进行加、减、乘、除等运算。 此外,DataFrame还支持apply方法,通过对DataFrame中的每个元素应用一个函数,能够实现更加复杂的运算。 二、Pandas时间序列处理 除了高效化运算,Pandas还具有很强的时间序列分析功能。特别是对于金融数据等时间序列数据,Pandas提供了丰富的扩展和支持。 (1)时间序列数据结构 Pandas中表示时间序列的数据结构主要有两个,分别是Timestamp和DatetimeIndex。Timestamp表示单个时间点,而DatetimeIndex则是多个时间点的集合。 (2)时间序列数据的创建和处理Pandas中,可以通过多种方式来创建时间序列数据,如使用date_range等,还可以使用resample方法进行重采样等处理。 (3)时间序列数据的可视化 Pandas还提供了强大的绘图功能,能够帮助用户更加直观地理解时间序列数据的变化趋势。通过使用plot方法,可以实现各种图形的绘制,如折线图、柱状图、散点图等。 总之,Pandas的高效化运算和时间序列处理功能为数据科学家带来了巨大的便利性,使得他们能够更加快速、精准地从数据中提取信息。 ### 回答3: Pandas是一个强大的Python数据分析库,它具有高效的运算和时间序列处理能力。这使得Pandas成为数据科学家和分析师的首选工具之一。 Pandas高效化运算主要体现在以下三个方面: 1. 向量化运算 Pandas中的向量化运算可以让我们像对待单个数值一样处理整个Series或DataFrame,这比使用Python内置函数循环计算要快很多。此外,Pandas处理向量化运算时,还会使用Cython等高性能库进行加速。 2. apply函数 apply函数是Pandas中非常重要的一个函数,它可以让我们对Series或DataFrame中的元素进行自定义的处理。使用apply函数,我们可以将自己编写的函数应用于Pandas的所有元素,极大的发挥了Pandas的灵活性和高效性。 3. 分组运算 在数据分析过程中,常常需要对数据进行分组运算,然后进行聚合操作。Pandas中的分组运算可以非常高效地处理大量数据,例如对数据分组统计、分组计算均值、中位数、方差等等。 除了高效的运算能力,Pandas还具有强大的时间序列处理能力。在时间序列数据分析过程中,时间索引可谓至关重要,Pandas中的时间序列工具极大地方便了我们的时间序列处理。 1. 时间序列索引 Pandas中的DataFrame和Series都支持时间序列索引,可以很方便地对时间序列数据进行切片、索引、过滤和重取样等操作。 2. 时间数据重取样 时间数据的采样频率对于数据分析非常重要。Pandas提供了resample方法可以对时间序列数据进行重新采样。例如,我们可以将以天为单位的数据重新采样为以周为单位的数据。 3. 移动窗口函数 移动窗口函数可以计算时间序列数据在移动窗口上的各种统计量,如移动平均、移动标准差等。Pandas提供了rolling函数可以很方便地实现这些操作。 总之,Pandas高效的运算能力和强大的时间序列处理能力使得它成为数据分析工作中必不可少的工具之一,同时也方便数据分析者快速处理和分析大量的数据,并有效地发掘数据中的价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值