关闭

三个盒子装金币问题

标签: 三个盒子装金币概率是23
877人阅读 评论(0) 收藏 举报
分类:

http://blog.csdn.net/pipisorry/article/details/72859426

问题

有三个盒子,只有 一个里面装有金币。你随机抽取一个;然后有人告诉你,剩下的两个盒子中,他随机的打开了一个,发现里面是空的;然后他问你,要不要把你的盒子和另一个未打开的盒子交换?

解答

这个问题中最关键的焦点就是那个既定的空盒子中含有金币的概率到底是不是三分之一的问题。

这个问题最初是在某BB大师的6Sigma关于概率的讲座上,他的解释是:每个盒子都有三分之一的概率,现在你手里的盒子有三分之一的概率是装有金币的,所以如果不交换你的概率就是三分之一;而剩下的盒子概率之和是三分之二的,其中一个已经证明了是没有装有金币的,那么那个未打开的盒子就是三分之二的概率。所以交换盒子的概率大于不交换盒子的概率高一倍。并且他现场做了一次演示,在完成的6次实验中,的确发生了四次交换后拿到金币的事情。BB大师没有继续做下去,现场的人似乎都觉得的确是这样。

疑惑?

我把这个过程分成三个步骤
     1.我们从三个盒子中随机抽取一个;
     2.评判从剩下的两个盒子中找出了一个盒子没有装有金币(完成题设);
     3.我们决定要不要交换盒子;
  在第一个阶段,每个盒子装有金币的概率的确是三分之一;
  但是在第二个阶段,概率却发生了变化,因为当知道一个盒子是空盒子的时候,这个空盒子的概率变成了三分之零,我们选择的盒子和那个剩下未开的盒子各自占有了二分之一的概率;
  所以在第三个阶段,无论交换还是不交换,结构都是一样的,都有二分之一的概率拿到金币;

为了验证这个逻辑推理,我们做一个全因子DOE。
  有三个变量ABC,假设我们每次选取的盒子都是A(因为三个盒子是等价的,所以可以如此假设),
并进一步设定每次都是剩下的B盒子是空的;同时设定,我们每次的选择结构用D来表示,选择后的结果用E来表示;并进一步假设每次都不换;这样久长生了这样的一个矩阵,在这个矩阵中E做为输出,它的值等于A的值(用?表示):
A B C D E
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
…………
  为了得到我们的结论(概率一样),我们采用反推法。
  根据条件可以知道
     A+B+C=1
     B==0
     所以A+C=1;
  又因为单独在第三阶段观看,A=C,所以A=C=0.5;这与(C Bar)=2*(A Bar)相矛盾。
  因此,无论交换与不交换,结果都是一样的。
  放到现实中,可以这样进行DOE,
  A为我们第一次选择的盒子,B为空盒子(固定),C为含有金币的盒子。
  每次第三步我们都不交换,所以我们一直拿到的是空盒子A。
  但实际上A,C否必须符合0-1正态分布,也就是说,A中含有金币和不含金币的概率是一样的,因此上面的实验不成立,且矛盾,从而推出跟上面的矩阵一致的结果。

[一个关于三个盒子装金币问题的讨论]

lz解析

还是必须换盒子,理由如下:

1 标准解答中剩下两个盒子一个概率是1/3,一个概率是2/3。

2 我们看到疑惑中的解析剩下的两个盒子都各自有1/2的概率,所以没有必要交换。

举个极端的示例,如果有100个盒子,其中一个你选择了概率1/100,然后我从剩下99个选了98个盒子都是空的,难道最后一个盒子概率是99/100?就是说如果换的话几乎就必然选中?

或者再举个例子,标准解答中,将你没有选中的两个盒子当成一组概率2/3,但是我也可以将你选中的盒子和已经知道是空盒子的盒子当成一组,这样不就成了不换盒子拿到金币的概率更大吗?

lz仔细思考了一下,还是支持标准解答!问题出在哪里呢?

lz认为问题出在随机从剩下的两个盒子中选择一个盒子为空这个上面!从极端示例出发吧,将100个盒子编号,你选中的为1号,然后从2-100中随机选择98个盒子,你发现这98个盒子都是空的!这里,注意!怎么可能这么容易随机选择98个盒子,98个都是空的!!必然是经过上万次实验才可能得到这样的题设!所以2-100个盒子中并不是指定第100号盒子没有被随机选出来为空,而是2-100个盒子中随机的某一个盒子没有被随机选出来为空。

这样也就是说我让你重新选择时候,是从 “你之前选择的那个盒子” 和“2-100个盒子中随机的没有被随机选出来为空的某一个盒子”,前者概率为1/100,后者为99/100,这个意思其实就是相当于我平均做99次实验,选择其中一个实验中刚好随机选择的98个盒子都是空的那次实验让你重新考虑换还是不换,所以必须要换!

所以标准解答中“并且他现场做了一次演示,在完成的6次实验中,的确发生了四次交换后拿到金币的事情。BB大师没有继续做下去,现场的人似乎都觉得的确是这样。”,意思貌似是说主持人做了6次,只有4次刚好随机发现其中的那个是空的!只是选择了6次中的4次来让你考虑换还是不换。

题外

如果将随机去掉?

这里主持人明显是知道哪些盒子是没有金币的,这时剩下的两者有金币的概率应该是一样的了。

from: http://blog.csdn.net/pipisorry/article/details/72859426

ref:


1
0
查看评论

【算法设计与分析】分金币

【题目】 【输入输出要求】 【输出样例】 【源代码】 //中位数问题 #include #include int m[1000001],p[1000001]; int sub(int a,int b) { if(a < b) { return b - a...
  • LDan508
  • LDan508
  • 2016-06-30 16:53
  • 511

金币阵列问题

问题描述:有m*n枚金币在桌面上排列成一个m行n列的金币阵列。每一枚金币或正面朝上,或背面朝上。用数字表示金币状态,0表示正面朝上,1表示背面朝上。 金币阵列游戏的规则是:     (1)每次将任一行金币翻过来放在原来的位置上。     (2)每次可以任选2列...
  • iamzxf
  • iamzxf
  • 2013-08-29 13:28
  • 2173

“三个盒子藏金币的问题”“海盗藏金问题”

今天在公司发了一个老问题的讨论。有三个盒子,其中的一个里面藏有100块钱。你从中选择一个,选完之后,主持人在剩下的两个盒子里面打开一个空的盒子。然后,问你要不要换一下你手中的盒子。结果十多个人讨论了一个下午都没有结论。(明显的两派,虽然之中一派人数有压倒性优势)最后决定写个程序模拟。 我的...
  • erics_lele
  • erics_lele
  • 2008-01-15 16:07
  • 1151

隐马尔可夫模型三个问题的求解(一)

上一篇《隐马尔可夫模型介绍》中讲解了马尔可夫假设和隐马尔可夫模型 HMM,并提到了 HMM 中的三个基本问题,但没有展开讨论其求解。本篇就此做出解答。 本文主要参考《HMM 学习最佳范例》。 先回顾一下,上节我们就硬币的例子提出了三个问题: 给定上述模型,观察到的结果(硬币的正反面...
  • u012116229
  • u012116229
  • 2015-02-04 15:15
  • 2599

算法 分金币

圆桌旁坐着n个人,每人有一定数量的金币,金币总数总能被n整除。每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数相等,你的任务是求出被转手的金币数量的最小值。 输入第一行为整数n(n 对于每组数据输出被转手金币数量的最小值。 eg: 3 100 100 100 0 4 1...
  • try_fei_ge
  • try_fei_ge
  • 2017-06-14 22:32
  • 371

马里奥吃金币消失

include pragma comment( linker, “/subsystem:\”console\” /entry:\”mainCRTStartup\”” )pragma comment(lib, “YZKGame.lib”)int beginGameText = 0;void gameM...
  • qq_40596257
  • qq_40596257
  • 2017-12-06 11:52
  • 78

C/C++每日小练(六)——分金币

分金币 题目描述: 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除。每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等。你的任务时求出被转手的金币数量的最小值。比如,n=4,且4个人的金币数量分别为1,2,5,4时,只需转移4枚金币(第3个人给第2个人两枚金币,...
  • u012904198
  • u012904198
  • 2014-04-24 17:05
  • 1445

假金币问题-PKUacm1029-ACM

假金币 “Gold Bar”银行收到可靠消息:在前次的N 个金币中有一枚重量不同的假金币(其他金币的重量都相同)。经济危机之后他们只有一台天平可用。用这台天平,可以称量出左边托盘中的物体是轻于、重于或等于右边托盘中的物体。 为了分辨出假金币,银行职员将所有的金币编为1到N号。然后用天平称量不同的...
  • Skylv111
  • Skylv111
  • 2014-08-29 19:06
  • 768

1-4金币阵列问题

代码是别人的,感觉写的很好。写这个博客,主要是想要重温一下思路。 枚举1~m中,每一列为第一列的情况, //从1~n行,找出不满足的行,进行一次行变换 //若是所枚举的这一列可以成功根据规则转换成目标矩阵,则,此时的矩阵与原矩阵的差别只会在列序上 此时,从i=2 列(第二列)开始与目标矩阵的...
  • sftxlin
  • sftxlin
  • 2012-02-22 11:42
  • 2722

【两个智力题】金币测重量,找假币

前两天面试问了我找假币的问题,那个是求尾数,真币重10g,假币重9g,由于假币抽取个数不同1-9,总重量就会是尾数9-1,比较简单。所以才搜搜这种问题 101个硬币100真、1假,真假区别在于重量。请用无砝码天平称两次给出真币重还是假币重的结论。 方法1: 把硬币分成50...
  • cquptzzq
  • cquptzzq
  • 2014-02-18 11:50
  • 1010
    个人资料
    • 访问:3642793次
    • 积分:30698
    • 等级:
    • 排名:第194名
    • 原创:569篇
    • 转载:30篇
    • 译文:5篇
    • 评论:316条
    Welcome to 皮皮blog~

    博客专栏
    最新评论