三个盒子装金币问题

标签: 三个盒子装金币概率是23
640人阅读 评论(0) 收藏 举报
分类:

http://blog.csdn.net/pipisorry/article/details/72859426

问题

有三个盒子,只有 一个里面装有金币。你随机抽取一个;然后有人告诉你,剩下的两个盒子中,他随机的打开了一个,发现里面是空的;然后他问你,要不要把你的盒子和另一个未打开的盒子交换?

解答

这个问题中最关键的焦点就是那个既定的空盒子中含有金币的概率到底是不是三分之一的问题。

这个问题最初是在某BB大师的6Sigma关于概率的讲座上,他的解释是:每个盒子都有三分之一的概率,现在你手里的盒子有三分之一的概率是装有金币的,所以如果不交换你的概率就是三分之一;而剩下的盒子概率之和是三分之二的,其中一个已经证明了是没有装有金币的,那么那个未打开的盒子就是三分之二的概率。所以交换盒子的概率大于不交换盒子的概率高一倍。并且他现场做了一次演示,在完成的6次实验中,的确发生了四次交换后拿到金币的事情。BB大师没有继续做下去,现场的人似乎都觉得的确是这样。

疑惑?

我把这个过程分成三个步骤
     1.我们从三个盒子中随机抽取一个;
     2.评判从剩下的两个盒子中找出了一个盒子没有装有金币(完成题设);
     3.我们决定要不要交换盒子;
  在第一个阶段,每个盒子装有金币的概率的确是三分之一;
  但是在第二个阶段,概率却发生了变化,因为当知道一个盒子是空盒子的时候,这个空盒子的概率变成了三分之零,我们选择的盒子和那个剩下未开的盒子各自占有了二分之一的概率;
  所以在第三个阶段,无论交换还是不交换,结构都是一样的,都有二分之一的概率拿到金币;

为了验证这个逻辑推理,我们做一个全因子DOE。
  有三个变量ABC,假设我们每次选取的盒子都是A(因为三个盒子是等价的,所以可以如此假设),
并进一步设定每次都是剩下的B盒子是空的;同时设定,我们每次的选择结构用D来表示,选择后的结果用E来表示;并进一步假设每次都不换;这样久长生了这样的一个矩阵,在这个矩阵中E做为输出,它的值等于A的值(用?表示):
A B C D E
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
?0 * 0 ?
…………
  为了得到我们的结论(概率一样),我们采用反推法。
  根据条件可以知道
     A+B+C=1
     B==0
     所以A+C=1;
  又因为单独在第三阶段观看,A=C,所以A=C=0.5;这与(C Bar)=2*(A Bar)相矛盾。
  因此,无论交换与不交换,结果都是一样的。
  放到现实中,可以这样进行DOE,
  A为我们第一次选择的盒子,B为空盒子(固定),C为含有金币的盒子。
  每次第三步我们都不交换,所以我们一直拿到的是空盒子A。
  但实际上A,C否必须符合0-1正态分布,也就是说,A中含有金币和不含金币的概率是一样的,因此上面的实验不成立,且矛盾,从而推出跟上面的矩阵一致的结果。

[一个关于三个盒子装金币问题的讨论]

lz解析

还是必须换盒子,理由如下:

1 标准解答中剩下两个盒子一个概率是1/3,一个概率是2/3。

2 我们看到疑惑中的解析剩下的两个盒子都各自有1/2的概率,所以没有必要交换。

举个极端的示例,如果有100个盒子,其中一个你选择了概率1/100,然后我从剩下99个选了98个盒子都是空的,难道最后一个盒子概率是99/100?就是说如果换的话几乎就必然选中?

或者再举个例子,标准解答中,将你没有选中的两个盒子当成一组概率2/3,但是我也可以将你选中的盒子和已经知道是空盒子的盒子当成一组,这样不就成了不换盒子拿到金币的概率更大吗?

lz仔细思考了一下,还是支持标准解答!问题出在哪里呢?

lz认为问题出在随机从剩下的两个盒子中选择一个盒子为空这个上面!从极端示例出发吧,将100个盒子编号,你选中的为1号,然后从2-100中随机选择98个盒子,你发现这98个盒子都是空的!这里,注意!怎么可能这么容易随机选择98个盒子,98个都是空的!!必然是经过上万次实验才可能得到这样的题设!所以2-100个盒子中并不是指定第100号盒子没有被随机选出来为空,而是2-100个盒子中随机的某一个盒子没有被随机选出来为空。

这样也就是说我让你重新选择时候,是从 “你之前选择的那个盒子” 和“2-100个盒子中随机的没有被随机选出来为空的某一个盒子”,前者概率为1/100,后者为99/100,这个意思其实就是相当于我平均做99次实验,选择其中一个实验中刚好随机选择的98个盒子都是空的那次实验让你重新考虑换还是不换,所以必须要换!

所以标准解答中“并且他现场做了一次演示,在完成的6次实验中,的确发生了四次交换后拿到金币的事情。BB大师没有继续做下去,现场的人似乎都觉得的确是这样。”,意思貌似是说主持人做了6次,只有4次刚好随机发现其中的那个是空的!只是选择了6次中的4次来让你考虑换还是不换。

题外

如果将随机去掉?

这里主持人明显是知道哪些盒子是没有金币的,这时剩下的两者有金币的概率应该是一样的了。

from: http://blog.csdn.net/pipisorry/article/details/72859426

ref:


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2907661次
    • 积分:27162
    • 等级:
    • 排名:第227名
    • 原创:556篇
    • 转载:30篇
    • 译文:5篇
    • 评论:254条
    Welcome to 皮皮blog~

    博客专栏
    最新评论