平面几何和立体几何

标签: 数学几何
575人阅读 评论(0) 收藏 举报
分类:

http://blog.csdn.net/pipisorry/article/details/73294222

平面几何

余弦定理和勾股定理

余弦定理和勾股定理的几何图形解释

[震惊!余弦定理和勾股定理竟然有这样的关系]


点间距离、点线距离、线间距离

两点间的距离

已知平面上两点P1(x1,y1), P2(x2,y2)。分别过两点作x轴 和 y轴的垂线,在Rt△P1 QP2中,|P1 P2|2 = |P1 Q|2 + |P2 Q|2

从图可知 |P1 Q| = |x2 – x1 |,|P2 Q| = |y2 –  y1 |

代入可得两点间的距离公式:

点到直线的距离

若在平面坐标几何上的直线定义为ax + by + c = 0,点的座标为(x0, y0),则两者间的距离为:

d =  \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2+b^2}}

已知平面上的一点P(x0 ,y0)和直线l:Ax + By + C = 0.

过点 P作 PN // x轴,PN ∩ l = N,  作 PM // y轴,PM ∩ l = M,作 PQ ⊥ l, PQ ∩ l = Q

那么点P到直线上的距离就是 | PQ |,设 | PQ | = d,由三角形面积公式可得

在Rt△MPN中,d · |MN | = | PM | · | PN |

现在分别求出 | MN | 、 | PM |、| PN |

∵ M、N 两点在直线l上,PN // x轴, 把y0代入Ax + By + C = 0 可得点N的横坐标是 – (By0 + C) / A

同理PM // y轴,把x0代入Ax + By + C = 0 可得点M的纵坐标是 – (Ay0 + C) / B

其它证明方法参考[证明方法]

点到平面的距离

若点坐标为(x_0,y_0,z_0),平面为Ax+By+Cz+D=0,则点到平面的距离为:

d = \frac{\left|Ax_0+By_0+Cz_0+D\right|}{\sqrt{A^2+B^2+C^2}}

点到n维超平面的有符号正交(垂直)距离

考虑任意一点 x 和它在决策面上的投影 x ⊥ ,我们有

将 这 个 等 式 的 两 侧 同 时 乘 以 w T , 然 后 加 上 w 0 , 并 且 使 用 y(x) = w T + w 0 以及 y(x ⊥ ) = w T x ⊥ + w 0 = 0 ,我们有


二维线性判别函数的几何表示。决策面(红色)垂直与 w ,它距离原点的偏移量由偏置参数 w 0 控制。此外,一个一般的点 x 与决策面的有符号的正交距离为 y(x)/∥w∥ 。

[PRML]

[计算几何算法4. 关于平面以及点到平面的距离]


两条平行线间的距离

若直线分别为ax + by + c1 = 0,和ax + by + c2 = 0,则两者间的距离为:

d = \frac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}

夹在两条平行线间公垂线段的长。可取其中任何一条直线上的一点作另一条平行线的垂线,再用点到直接的距离公式求出的距离,便是两条平行线间的距离。如何选取点? —— 选直线与x轴或y轴的交点, 这样可使(x0 ,y0)中的一个为0,计算更方便。


两平行平面间的距离

若两平行平面分别为 Ax + By + Cz + D1 = 0 和 Ax + By + Cz + D2 = 0,则两者间的距离为:

d = \frac{\left|D_1-D_2\right|}{\sqrt{A^2+B^2+C^2}}
[wikipedia 距离]
[点间距离、点线距离、线间距离]
皮皮blog



立体几何

球体积公式

n维球体积公式

Vn(r)=πn/2Γ(n2+1)rn

D 维空间的半径为 r 的球体的体积一定是 r^D 的倍数,因此我们有VD (r) = K_D * r^D。其中常数 K D 值依赖于 D 。

n维球表面积公式

Sn(r)=2πn/2Γ(n2)rn1


[鬼斧神工:求n维球的体积]

3维球体积公式

V = ⁴⁄₃πr³


在三维空间中建立的几何直觉会在考虑高维空间时不起作用。即高维球体中质量并不是均匀分布的!

示例

考虑 D 维空间的一个半径 r = 1 的球体,请问,位于半径 r = 1 − ε 和半径 r = 1 之间的部分占球的总体积的百分比是多少?

我们要求解的体积比就是
(V D (1) − V D (1 − ε)) / V D (1) = 1 − (1 − ε) ^D
我们看到,对于较大的 D ,这个体积比趋近于1,即使对于小的 ε 也是这样。因此,在高维空间中,一个球体的大部分体积都聚集在表面附近的薄球壳上!

皮皮blog

from: http://blog.csdn.net/pipisorry/article/details/73294222

ref:


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2907641次
    • 积分:27162
    • 等级:
    • 排名:第227名
    • 原创:556篇
    • 转载:30篇
    • 译文:5篇
    • 评论:254条
    Welcome to 皮皮blog~

    博客专栏
    最新评论