关闭
当前搜索:

格雷码Gray Code

http://blog.csdn.net/pipisorry/article/details/72356418格雷码简介  在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。格雷码(Gray Code)又称Grey Code、葛莱码、格莱码、戈莱码、循环码、反射二...
阅读(1632) 评论(0)

C++:函数指针

http://blog.csdn.net/pipisorry/article/details/72458168函数指针函数存放在内存的代码区域内,它们同样有地址。如果我们有一个int test(int a)的函数,那么,它的地址就是函数的名字,如同数组的名字就是数组的起始地址。1、函数指针的定义方式:data_types (*func_pointer)( data_types arg1, data...
阅读(399) 评论(0)

C++:模板

http://blog.csdn.net/pipisorry/article/details/72353250C++ 模板模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。模板是创建泛型类或函数的蓝图或公式。库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念。每个容器都有一个单一的定义,比如 向量,我们可以定义许多不同类型的向量,比如 vector 或...
阅读(480) 评论(0)

C++ 函数

http://blog.csdn.net/pipisorry/article/details/72353172定义函数C++ 中的函数定义的一般形式如下: return_type function_name( parameter list ){ body of the function}在 C++ 中,函数由一个函数头和一个函数主体组成。下面列出一个函数的所有组成部分:返回类型:一个函数可以返...
阅读(385) 评论(0)

Python模块:bisect二分算法模块

http://blog.csdn.net/pipisorry/article/details/72307432Bisect模块简介Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n)。对于大数据量,则可以用二分查找进行优化。二分查找要求对象必须有序,其基本原理如下:1.从数组的中间元素开始,如果中间元...
阅读(629) 评论(0)

Linux: 系统设置与备份策略

http://blog.csdn.net/pipisorry/article/details/72123258系统基本设置网络设置 (手动设置与DHCP自动取得)日期与时间设置语系设置LANG 与 locale 的指令能够查询目前的语系数据与变量, /etc/locale.conf 其实就是语系的配置文件。 此外,系统的语系与你目前软件的语系数据可能是可以不一样的!如果想要知道目前“系统语系”的话...
阅读(595) 评论(0)

Linux:网络安全与主机基本防护:限制端口, 网络升级与 SELinux

http://blog.csdn.net/pipisorry/article/details/72123815系统基本设置网络设置 (手动设置与DHCP自动取得)目前的主流网卡为使用以太网络协定所开发出来的以太网卡 (Ethernet),因此我们 Linux 就称呼这种网络接口为 ethN (N 为数字)。 举例来说,机上面有一张以太网卡,因此主机的网络接口就是 eth0 (第一张为 0 号开始)...
阅读(716) 评论(1)

Linux:Linux常用网络指令

http://blog.csdn.net/pipisorry/article/details/72123888网络参数设定使用的指令ifconfig :查询、设定网络卡与 IP 网域等相关参数;ifup, ifdown:这两个档案是 script,透过更简单的方式来启动网络接口;route :查询、设定路由表 (route table)ip :复合式的指令, 可...
阅读(1419) 评论(0)

深度学习:梯度消失和梯度爆炸

梯度消失主要是因为网络层数太多,太深,导致梯度无法传播。本质应该是激活函数的饱和性。[神经网络中的激活函数 ]DNN结果出现nan值?梯度爆炸,导致结果不收敛。都是梯度太大惹的祸,所以可以通过减小学习率(梯度变化直接变小)、减小batch size(累积梯度更小)、 features规格化(避免突然来一个大的输入)。 RNN的梯度爆炸和消失问题不幸的是,实践中前面介绍的几种RNNs并...
阅读(711) 评论(0)

未名

。...
阅读(87) 评论(0)

深度学习:径向基网络(RBF)

如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。为什么RBF网络学...
阅读(323) 评论(0)

原码, 反码, 补码

http://blog.csdn.net/pipisorry/article/details/71157146原码, 反码, 补码的基础概念和计算方法在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念。对于一个数, 计算机要使用一定的编码方式进行存储。 原码, 反码, 补码是机器存储一个具体数字的编码方式。原码原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值。...
阅读(409) 评论(0)

深度学习:神经网络中的激活函数

激活函数神经网络神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function。  为什么要用激活函数神经网络中激活函数的主要作用是提供网络的非线性建模能力,如不特别说明,激活函数一般而言是非线性函数。假设一个示例神经网络中仅包含线性卷积和全连接运算,那么该网络仅能够表达线性映射,即便增加网络的深度也依旧还是线性映射,难以有效建模...
阅读(802) 评论(0)

C++:标准程序库-STL迭代器Iterator

http://blog.csdn.net/pipisorry/article/details/71156760暂时保存一下对templete类型迭代时报错c++vector:iterator it出错error: need ‘typename’ before ‘std::set::iterator’ because ‘std::set’ is a dependent scope也就是在set::i...
阅读(523) 评论(0)

拓扑排序Topological Sorting

http://blog.csdn.net/pipisorry/article/details/71125207拓扑排序Topological Sorting在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:每个顶点出现且只出现一次。若存在一条从顶点 A 到顶点 B...
阅读(1168) 评论(0)

“ 鸡尾酒会问题”(cocktail party problem)

Introduction“ 鸡尾酒会问题”(cocktail party problem)是在计算机语音识别领域的一个问题,当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。解决方案斯坦福大学的Andrew NG教授的机器学习公开课(http://v.163.com/special/opencourse/m...
阅读(1118) 评论(0)

深度学习:前馈神经网络neural network

前馈神经网络:FFNN模型(feedforward neural network)固定基函数的线性组合构成的回归模型和分类模型。我们看到,这些模型具有一些有用的分析性质和计算性质,但是它们的实际应用被维数灾难问题限制了。为了将这些模型应用于大规模的问题,有必要根据数据调节基函数。一种方法是事先固定基函数的数量,但是允许基函数可调节。换句话说,就是使用参数形式的基函数,这些参数可以在训练阶段调节。在...
阅读(488) 评论(0)

深度学习:感知机perceptron

感知机是二分类的线性分类模型,输入是特征向量,输出是类别,取值+1,-1。感知机学习旨在求出将训练数据进行线性划分的分离超平面wx + b = 0,其中w是超平面的法向量,b是超平面的截距。感知机模型1.分离超平面将样本点分成两部分,位于法向量w所指向的一面是正样本,另一面则是负样本;2.由输入空间到输出空间的模型函数如下:策略1.特征空间中任意一个样本点x0到分离超平面的距离可以记为:2.感知机...
阅读(205) 评论(0)

深度学习:综述

深度学习相比于传统方法的优势随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高。其实这是一个特征表达力的问题,传统方法特征表达力,不如Deep Learning的多层学习得到的更有效果的表达。举个例子,假定有一种疾病,这种疾病容易在个高且胖的人群,以及个矮且瘦的人群中易感。那么任意从给一个特征角度上看,比如肥胖,那么胖的这部分人中,得此病的概率为50%,不胖的...
阅读(252) 评论(0)

矩阵论:向量求导/微分和矩阵微分

http://blog.csdn.net/pipisorry/article/details/68961388复杂的矩阵函数求导。著名的matrix cookbook为广大的研究者们提供了一本大字典,里面有着各种简单到复杂矩阵和向量的求导法则。布局(Layout)矩阵求导有两种布局,分子布局(numerator layout)和分母布局(denominator layout)。为了阐明这两种布局的...
阅读(4650) 评论(0)
604条 共31页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:3678004次
    • 积分:30874
    • 等级:
    • 排名:第191名
    • 原创:569篇
    • 转载:30篇
    • 译文:5篇
    • 评论:318条
    Welcome to 皮皮blog~

    博客专栏
    最新评论