当前搜索:

深度学习:神经网络中的激活函数

激活函数神经网络神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function。  为什么要用激活函数神经网络中激活函数的主要作用是提供网络的非线性建模能力,如不特别说明,激活函数一般而言是非线性函数。假设一个示例神经网络中仅包含线性卷积和全连接运算,那么该网络仅能够表达线性映射,即便增加网络的深度也依旧还是线性映射,难以有效建模...
阅读(269) 评论(0)

C++:标准程序库-STL迭代器Iterator

http://blog.csdn.net/pipisorry/article/details/71156760暂时保存一下对templete类型迭代时报错c++vector:iterator it出错error: need ‘typename’ before ‘std::set::iterator’ because ‘std::set’ is a dependent scope也就是在set::i...
阅读(446) 评论(0)

拓扑排序Topological Sorting

http://blog.csdn.net/pipisorry/article/details/71125207拓扑排序Topological Sorting在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:每个顶点出现且只出现一次。若存在一条从顶点 A 到顶点 B...
阅读(717) 评论(0)

“ 鸡尾酒会问题”(cocktail party problem)

Introduction“ 鸡尾酒会问题”(cocktail party problem)是在计算机语音识别领域的一个问题,当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。解决方案斯坦福大学的Andrew NG教授的机器学习公开课(http://v.163.com/special/opencourse/m...
阅读(844) 评论(0)

深度学习:前馈神经网络neural network

前馈神经网络:FFNN模型(feedforward neural network)固定基函数的线性组合构成的回归模型和分类模型。我们看到,这些模型具有一些有用的分析性质和计算性质,但是它们的实际应用被维数灾难问题限制了。为了将这些模型应用于大规模的问题,有必要根据数据调节基函数。一种方法是事先固定基函数的数量,但是允许基函数可调节。换句话说,就是使用参数形式的基函数,这些参数可以在训练阶段调节。在...
阅读(159) 评论(0)

深度学习:感知机perceptron

感知机是二分类的线性分类模型,输入是特征向量,输出是类别,取值+1,-1。感知机学习旨在求出将训练数据进行线性划分的分离超平面wx + b = 0,其中w是超平面的法向量,b是超平面的截距。感知机模型1.分离超平面将样本点分成两部分,位于法向量w所指向的一面是正样本,另一面则是负样本;2.由输入空间到输出空间的模型函数如下:策略1.特征空间中任意一个样本点x0到分离超平面的距离可以记为:2.感知机...
阅读(80) 评论(0)

深度学习:综述

深度学习相比于传统方法的优势随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高。其实这是一个特征表达力的问题,传统方法特征表达力,不如Deep Learning的多层学习得到的更有效果的表达。举个例子,假定有一种疾病,这种疾病容易在个高且胖的人群,以及个矮且瘦的人群中易感。那么任意从给一个特征角度上看,比如肥胖,那么胖的这部分人中,得此病的概率为50%,不胖的...
阅读(125) 评论(0)

矩阵论:向量求导/微分和矩阵微分

http://blog.csdn.net/pipisorry/article/details/68961388复杂的矩阵函数求导。著名的matrix cookbook为广大的研究者们提供了一本大字典,里面有着各种简单到复杂矩阵和向量的求导法则。布局(Layout)矩阵求导有两种布局,分子布局(numerator layout)和分母布局(denominator layout)。为了阐明这两种布局的...
阅读(3128) 评论(0)

时间序列分析

http://blog.csdn.net/pipisorry/article/details/62053938时间序列简介时间序列是时间间隔不变的情况下收集的时间点集合。这些集合被分析用来了解长期发展趋势,为了预测未来或者表现分析的其他形式。但是什么时间序列?与常见的回归问题的不同?1、时间序列是跟时间有关的。所以基于线性回归模型的假设:观察结果是独立的。在这种情况下是不成立的。2、随着上升或者下...
阅读(3410) 评论(3)

Bloom Filter布隆过滤器

http://blog.csdn.net/pipisorry/article/details/64127666Bloom Filter简介    Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过...
阅读(1895) 评论(2)

Count-Min Sketch 算法

http://blog.csdn.net/pipisorry/article/details/64126199 统计频率算法问题:如果老板让你统计一个实时的数据流中元素出现的频率,并且准备随时回答某个元...
阅读(1478) 评论(0)

BitMap算法

http://blog.csdn.net/pipisorry/article/details/62443757BitMapBitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射。在所有具有性能优化的数据结构中,大家使用最多的就是hash表,是的,在具有定位查找上具有O(1)的常量时间,多么的简洁优美。但是数据量大了,内存就不够了。当然也可以使用类似外排序来解决问题的,由于要...
阅读(1054) 评论(0)

python模块:array数组模块

http://blog.csdn.net/pipisorry/article/details/62889137数组模块array简介在Python中,列表是一个动态的指针数组,而array模块所提供的array对象则是保存相同类型的数值的动态数组。list的内存分析参考[python数据类型的内存分析 ]。数组并不是Python中内置的标配数据结构,不...
阅读(954) 评论(0)

数值分析:数据插值方法

http://blog.csdn.net/pipisorry/article/details/62227459插值、拟合和逼近的区别据维基百科,科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合。通过拟合得到的函数获得未知点的数据的方法,叫做插值。其中,拟合函数经过所有已知...
阅读(2137) 评论(0)

数据预处理:独热编码(One-Hot Encoding)

问题由来在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。例如,考虑一下的三个特征:["male", "female"]["from Europe", "from US", "from Asia"]["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]如果将上述特征用数字表示,效率会高很多。例如:[...
阅读(6351) 评论(7)

集成方法:渐进梯度回归树GBRT(迭代决策树)

http://blog.csdn.net/pipisorry/article/details/60776803单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF。在最近几年的paper上,如iccv这种重量级会议,iccv 09年的里面有不少文章都是与Boosting和随...
阅读(3663) 评论(0)

Latex:TexStudio的使用

http://blog.csdn.net/pipisorry/article/details/54565608Texsdudio 快捷键The keyboard shortcuts can be modified at Options -> Shortcuts.The following list is a rough overview of the defaults keyboard short...
阅读(3641) 评论(0)

Latex:入门教程

http://blog.csdn.net/pipisorry/article/details/54571521总的来说,LaTex是一套排版系统,与word那种所见即所得对排版方式不太,用LaTex排版更像是写程序一样,将想要的排版效果用指令写出来,再通过LaTex编译成文档。简单来说,你只要按照要求撰写tex文件,就能够通过LaTex生成排版好的pdf文件。有些人可能听到写程序就头大了,其实使用...
阅读(9297) 评论(0)

Latex:简介及安装

http://blog.csdn.net/pipisorry/article/details/53998352LaTex是一个排版工具,功能强大。它是一个“所想即所得”的工具,你想怎么设定格式,就怎么设定格式。不过,前提是你知道一点latex语法(或者说,latex的命令),并且安装有latex的环境。先要安装latex软件(如下面的tex发行版texlive),之后才能使用latex编辑器Tex...
阅读(1751) 评论(0)

python复杂网络库networkx:绘图draw

http://blog.csdn.net/pipisorry/article/details/54291831networkx使用matplotlib绘制函数draw(G[, pos, ax, hold])Draw the graph G with Matplotlib.draw_networkx(G[, pos, arrows, with_labels])Draw the graph G usi...
阅读(2588) 评论(2)
592条 共30页首页 上一页 1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:3122500次
    • 积分:28222
    • 等级:
    • 排名:第212名
    • 原创:557篇
    • 转载:30篇
    • 译文:5篇
    • 评论:280条
    Welcome to 皮皮blog~

    博客专栏
    最新评论