关闭

gluLookAt矩阵推导

731人阅读 评论(0) 收藏 举报
分类:

最近需要自己手动算camera view矩阵,但是推导的结果跟OpenGL官方文档不一样,又因为我的浏览器没法完美看MathML,所以我一直以为OpenGL的官方文档http://www.opengl.org/sdk/docs/man/xhtml/gluLookAt.xml错了,今天才发现原来最终结果是一样的,困扰了我好久的一个问题终于解决了。

 

这里我准备从基变换的角度来推导这个矩阵。首先考虑2D的简单情况。现在的问题是,将空间从规范基(canonical basis)转换到照相机的基。

规范基是{(1, 0)^T, (0, 1)^T}, 照相机的基是{u, v},对于任意一个向量(s, t)^T,它的坐标在规范基下是(s, t)^T,也就是

(s, t)^T = s * (1, 0)^T + t * (0, 1)^T

如果可以将(0, 1)和(1, 0)用{u, v}表示,那么我们也可以求得(s, t)^T在另一组基下的坐标。

假设

(1, 0)^T = a * u + b * v

(0, 1)^T = c * u + d * v

那么带入上面的式子

(s, t)^T = s * (au + bv) + t * (cu + dv) = (as + ct) * u + (bs + dt) * v

坐标是(as + ct, bs + dt)^T, 也可以写成

(a c  * (s 

 b d)     t)

也就是说只要对原空间坐标(s, t)做一个矩阵变换就可以得到新的坐标。 

 

我们将两组基之间的转换写成矩阵的形式

(1 0  = (u v) (a c

 0 1)             b d)

那么

(a c  = (u v)^-1

 b d) 

M = (u v 0 

       0 0 1)^-1

那么,从规范基转换到任意一组基(u, v),只需要一个变换矩阵M(任意两组基之间的转换可以修改上述推导得到)。

由于照相机空间的原点也不在原来空间的原点,我们还需要做一个平移。假设照相机的位置在p, 那么

M_view = M * translationMatrix(-p) 

这样我们先将将照相机放在原点,然后再进行基的转换。

可以验证,

M_view =  (u v p 

                0 0 1)^-1

 

实际上,当{u, v}是一组正交基时,M是一个转动(rotation) 矩阵,即可得到

(u v 0        = (u v 0

 0 0 1)^-1      0 0 1)^T

这样

M_view = (u v 0      * (I -p

               0 0 1)^T     0 1)

这个推导可以拓展到三维空间中,因此

M_view = (u v w 0      * (I -p

               0 0 0 1)^T     0 1) 

也就是在gluLookAt文档中的矩阵。 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:7122266次
    • 积分:85051
    • 等级:
    • 排名:第17名
    • 原创:71篇
    • 转载:4341篇
    • 译文:2篇
    • 评论:861条
    公告
    声明:早期转载的文章未标明转载敬请原谅,以后将陆续改过来,向原创者致敬!

    文章分类