无理数e

转载 2015年07月08日 07:12:45
e在数学中是代表一个数的符号,其实还不限于数学领域。在大自然中,建构,呈现的形状,利率或者双曲线面积及微积分教科书、伯努利家族等。现已经e小数点后面两千位了。

1e的定义编辑

e是自然对数底数,是一个无限不循环小数,其值是2.71828...,它是这样定义的:
当n→∞时,(1+1/n)^n的极限
注:x^y表示x的y次方。

2e的范围编辑

随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。

3e的故事编辑

引入

这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是打开我们的记忆搜索器,大部分人能想到的重要数字,除了0和1外,大概就只有和圆有关的π了,了不起的话,再加上虚数单位的i=√-1。那么这个e究竟是何方神圣呢?

对数

在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢?

利息

这就要从以前说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。
我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以年周期来算的话,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中,所以e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。

4e的应用编辑

这个与计算复利关系密切的数,和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什么关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。e的影响力其实还不限于数学领域。大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。

5数学名人编辑

对数表的发明者

世界上第一个对数表是纳皮尔(John Napier)发明的。纳皮尔在十六世纪末、十七世纪初利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。因此纳皮尔整整花了二十年的时间建立他的对数表。

对数受到的赞誉

对数发明后,受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉。最早使用对数的人当中,包括了大名鼎鼎的天文学家开普勒 ,他利用对数,简化了行星轨道的繁复计算。

微积分教科书

在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实。比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是「始作俑者」吧?」)是罗必达先生。对啦,就是罗必达法则(L'Hospital's Rule)的那位罗必达。但是罗必达法则反倒是约翰.伯努利先发现的。不过这无关乎剽窃的问题,他们之间是有协议的。

伯努利家族

说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用「量产」形容。伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止于数学领域),就算随便列一列,也有一本书这么厚。不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架。自家人吵不够,也跟外面的人吵(可以说是「表里如一」)。连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多「孝子」们比起来,这位爸爸真该感到惭愧。

6e的大小编辑

e小数点后面几位

e=2.718281828459045235360287471352662497757247093699959574966967627724076630353 5475945713821785251664274274663919320

e的极限表示

e=lim<x-->0>(1+1/x)^x
=lim<n-->+∞>{1,2,3,4,…,n}
=lim<x-->+∞>∑(0,x)1/i!
注:{1,2,3,4,…,n}=1+1/{1+1/[2+(1/3+{1/4+…+(1/n)]})]…}

相关文章推荐

无理数的分数逼近

hdoj 4565 So Easy!(构造无理数共轭,矩阵快速幂)

最难的是要想到无理数共轭... 参考题解:点击打开链接 还要注意注意负数的取模,可以先+mod再进行取模. 代码: #include using namespace std; typedef lo...

平方根无理数的精确计算

以前做过一个类似要求计算根号2前100位的题目,不太好想,趁有空的时间在网上查了一下资料,借鉴网友的思路以及代码,自己重新做了一下,并把网友的代码做了一点改进,主要用到了基础数学的多项式的平方展开以及...

根号2以及π的计算--关于无理数的畅想

曾经写过两篇用朴素的原始思想理解现代数学概念的文章: 《科普文章-另一个视角解读计算机编码(修订版)》 《原始人的除法引发的闲聊》 这两篇文章里,我发现不需要那些老师教的范式也能很好地理解那些现...
  • dog250
  • dog250
  • 2017-07-02 12:38
  • 5230

Codeforces Round #395 (Div. 2)E: Timofey and remoduling(数学+数论)

E. Timofey and remodulingtime limit per test:2 secondsmemory limit per test:256 megabytesinput:stand...

Codeforces Round #354 (Div. 2) E (数学题)

E. The Last Fight Between Human and AI time limit per test 1 second memory limit per test...

Codeforces Round #346 (Div. 2) E. New Reform

E. New Reform time limit per test 1 second memory limit per test 256 megabytes inpu...

java-web-j2e学习建议路线

首先要明白Java体系设计到得三个方面:J2SE,J2EE,J2ME(KJAVA)。J2SE,Java 2 Platform Standard Edition,我们经常说到的JDK,就主要指的这个,它...

6 Bash Conditional Expression Examples ( -e, -eq, -z, !=, [, [[ ..)

Bash expression is the combination of operators, features, or values used to form a bash conditional...

【codeforces 761E】Dasha and Puzzle

【题目链接】:http://codeforces.com/contest/761/problem/E【题意】 给你一棵树,让你在平面上选定n个坐标; 使得这棵树的连接关系以二维坐标的形式展现出...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)