参数方法和非参数方法

本文介绍了机器学习中的参数方法和非参数方法,其中参数方法通过假定模型分布并估计参数进行建模,而非参数方法则直接基于训练数据进行预测。文章探讨了贝叶斯学派和非贝叶斯学派在处理先验知识上的差异,并提及贝叶斯决策理论。同时,提到了关联规则及其度量,如支持度、置信度和提升度。最后,讨论了参数估计的泛化误差,包括方差和偏倚在欠训练和过训练情况下的影响。
摘要由CSDN通过智能技术生成

参数方法和非参数方法

机器学习上的方法分为参数方法(根据先验知识假定模型服从某种分布,然后利用训练集估计出模型参数,也就弄清楚了整个模型,例如感知器)和非参数方法(基于记忆训练集,然后根据训练集预测,例如kNN)。

参数方法

参数方法根据先验知识假定模型服从某种分布,然后利用训练集估计出模型参数,也就弄清楚了整个模型。
  那么,估计模型参数到底是一个客观存在的参数还是一个概率密度分布,这个分歧就引出了贝叶斯学派和非贝叶斯学派的不同之处。

非贝叶斯学派

非贝叶斯学派认为先验知识是指一组数据服从某个分布,那么分布的参数是客观存在的,可以利用数据做出估计,进而获得后验估计。典型代表方法是最大似然估计。

贝叶斯学派

贝叶斯学派认为,先验知识是数据服从某个分布和这个分布参数的先验概率密度,模型的参数本来就是一个概率分布,数据集可以获得参数的后验概率密度,进而获得后验估计。这种方法称为贝叶斯估计。
  
  我学概率统计课程的时候对贝叶斯估计比价陌生,最近准备详细推导几个例题加深理解。对于贝叶斯估计,纸上得来终觉浅,还是推导几个例题较好。

贝叶斯决策理论

关于贝叶斯决策理论我之前学习学到过,博客里也总结过最小化期望风险的思想。

下面总结一下关联规则的一些度量。

关联规则

s u p p o r t ( X , Y ) = P ( X , Y ) support(X,Y)=P(X,Y) support(X,Y)=P(X,Y)
  

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值