算法笔记-1-最大子列和-Maximum Subsequence Sum

这篇博客探讨了如何使用动态规划找到一个数列的最大子列和,并给出当所有数都为负数时的特殊情况处理。通过分析,确定算法核心是识别导致和小于0的元素,以此划分数列并找出最大连续子列。提供了两种实现方式的代码示例,提倡逻辑思维和简洁编码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目内容:

Given a sequence of KK integers { N1,N2,...,NK }. A continuous subsequence is defined to be { N

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值