HDU 5713

原创 2016年05月31日 14:54:48

dp题目

首先很容易想到用d[s ][ j ] 代表集合s内的点组成j和联通集合的方式数目,转移为d[ s ][ j ] = (d[ s - s1 ][ j -  1] * f[s1]) 其中s1必须包含s中编号最小的一个元素,这是做限定,不然不好转移,f[s1 ]代表结合s1构成独立联通集合的所有方法数目。

下面求f[ s 1], 计cnt[ s1 ]为s1内点互相之间所有连边的数目, 那么 

f[ s1 ] = (1<<cnt[s1] )  - sum((1<<cnt[s1 - s2 ] )*  f[s2] ) 其中f[s2]必须包含s1中编号最小的边

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>

using namespace std;
typedef long long ll;
#define rep(i,n) for(int i = 0 ; i<(int)n;i++)
#define rep1(i,x,y) for(int i=(int)x;i<=(int)y;i++)
#define lowbit(x) (x&-x)

const int mod = 1000000009;
const int N = 14;
int d[1<<N][N];
int ma[N][N];
int n,m,K,cnt[1<<N];
int wei(int x){
     int ans = 0;
     while(x > 0){
         x>>=1;
         ans++;
     }
     return ans - 1;
}
int mi[N * N + N];
int f[1<<N],g[1<<N];
int main()
{
   mi[0] = 1;
   rep1(i , 1 , N*N) mi[i] = mi[i - 1] * 2 % mod;
   int T;
   int kase = 1;
   scanf("%d",&T);
   while(T--){
      scanf("%d %d %d",&n,&m,&K);
      memset(ma , 0, sizeof(ma));
      rep(i , m){
          int x , y;
          scanf("%d %d",&x,&y);
          --x; --y;
          ma[x][y] = ma[y][x] = 1;
      }
      cnt[0] = 0;
      for(int i =1; i < (1<<n); i++){
          cnt[i] = cnt[i-lowbit(i)];
          int k = wei(lowbit(i));
          rep(j , n){
              if((i>>j)&1)
                  cnt[i] += ma[j][k];
          }
      }

      f[0] = 0; g[0] = 1;
      for(int s = 1; s < (1<<n) ; s++){
            g[s] = 0;
            for(int j =(s - 1) & s ; j != 0 ; j = (j - 1)& s) if(j&(lowbit(s))){
                  g[s] = (g[s] + (ll)g[s - j] * f[j] % mod) % mod;
            }
            f[s] = (mi[cnt[s]] - g[s] + mod) % mod;
            g[s] = (g[s] + f[s]) % mod;
      }

      d[0][0] = 1;
      for(int s = 1; s<(1<<n) ; s++){
          for(int k = 0; k<=K;k++){
                d[s][k] = 0;
                if(k == 0)  continue;
                for(int j = s ; j ; j=(j-1)&s)if(j&(lowbit(s))){
                     d[s][k] = (d[s][k] + (ll)d[s - j][k - 1] * f[j] % mod) % mod;
                }
          }
      }
      printf("Case #%d:\n",kase++);
      printf("%d\n",(d[(1<<n)-1][K] + mod) %mod);
   }
    return 0;
}


vijos 1471 教主的游乐场 - 线段树优化dp

传送门 题解:首先这个题可以n遍bfs。 然后发现dp只记录一维状态不够,因为可能有环,不满足dp性质。 解决方案有如下两种: 1.于是找性质,发现非常有意思的一点是每个点可以向前跳到任何一个...
  • Mys_C_K
  • Mys_C_K
  • 2017年08月04日 19:53
  • 199

POJ3020-Antenna Placement

转载请注明出处:優YoU http://user.qzone.qq.com/289065406/blog/1299322779 提示:别被图片的圈圈误导了,看清楚题目,'*'是城市,'o'是空地...

HDU 5713 K个联通块【状压计数dp……补集转化?

显然可以f[s][i] 表示点集s有i个连通块的方案数,枚举子集的时候,令其中一个的i=1,并强行把lowbit(s)表示的节点塞在i=1的子集里面,就避免了算重 然后考虑如何计算对于点集s 全部连...
  • Flaze_
  • Flaze_
  • 2016年12月16日 00:02
  • 248

HDU 5713 & 2016"百度之星" 复赛(Astar Round3)1002 k个联通块

题意:众所周知,度度熊喜欢图,尤其是联通的图。 今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。思路:首先可以很容易想到状态...

HDU-5713-K个联通块 状压dp 计数技巧 去重技巧

题意 给一张无重边(可能有自环),求有多少种方案使得删除一些边后有KK个连通块。题解 删边等于添边。设dp[s][i]dp[s][i]表示状态为s的子集有k个连通块的方案数,则有dp[S0][...

HDU 5713 K个联通块 状压dp枚举子集 (2016百度之星复赛)

题意 众所周知,度度熊喜欢图,尤其是联通的图。 今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。  #inclu...

HDU5713 2016"百度之星" - 复赛(Astar Round3)K个联通块

一道状态压缩动态规划题 题目描述:众所周知,度度熊喜欢图,尤其是联通的图。今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。 ...

UvaLive-5713-Qin Shi Huang's National Road System

这个题在参考了某位牛人的博客后做出来的,地址:http://blog.csdn.net/hyogahyoga/article/details/8066812 第一次做这种对最小生成树建树的~主要的策...

LA5713 减小边权求MST

可以让一条边边权置零,求(置零边端点权值和/边权置零后MST)的最大值 枚举所有边置零的情况。置零边确定后,端点权值和确定,因此题目转化为置零任意一边后,求MST 1.先求原图MST 2.预处理...

UVA 5713 Qin Shi Huang's National Road System

题解: 类似最小生成树,先做最小生成树然后枚举顶点,删边和加边。 #include #include #include #include #include using namespace st...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 5713
举报原因:
原因补充:

(最多只允许输入30个字)