HDU 5713

原创 2016年05月31日 14:54:48

dp题目

首先很容易想到用d[s ][ j ] 代表集合s内的点组成j和联通集合的方式数目,转移为d[ s ][ j ] = (d[ s - s1 ][ j -  1] * f[s1]) 其中s1必须包含s中编号最小的一个元素,这是做限定,不然不好转移,f[s1 ]代表结合s1构成独立联通集合的所有方法数目。

下面求f[ s 1], 计cnt[ s1 ]为s1内点互相之间所有连边的数目, 那么 

f[ s1 ] = (1<<cnt[s1] )  - sum((1<<cnt[s1 - s2 ] )*  f[s2] ) 其中f[s2]必须包含s1中编号最小的边

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>

using namespace std;
typedef long long ll;
#define rep(i,n) for(int i = 0 ; i<(int)n;i++)
#define rep1(i,x,y) for(int i=(int)x;i<=(int)y;i++)
#define lowbit(x) (x&-x)

const int mod = 1000000009;
const int N = 14;
int d[1<<N][N];
int ma[N][N];
int n,m,K,cnt[1<<N];
int wei(int x){
     int ans = 0;
     while(x > 0){
         x>>=1;
         ans++;
     }
     return ans - 1;
}
int mi[N * N + N];
int f[1<<N],g[1<<N];
int main()
{
   mi[0] = 1;
   rep1(i , 1 , N*N) mi[i] = mi[i - 1] * 2 % mod;
   int T;
   int kase = 1;
   scanf("%d",&T);
   while(T--){
      scanf("%d %d %d",&n,&m,&K);
      memset(ma , 0, sizeof(ma));
      rep(i , m){
          int x , y;
          scanf("%d %d",&x,&y);
          --x; --y;
          ma[x][y] = ma[y][x] = 1;
      }
      cnt[0] = 0;
      for(int i =1; i < (1<<n); i++){
          cnt[i] = cnt[i-lowbit(i)];
          int k = wei(lowbit(i));
          rep(j , n){
              if((i>>j)&1)
                  cnt[i] += ma[j][k];
          }
      }

      f[0] = 0; g[0] = 1;
      for(int s = 1; s < (1<<n) ; s++){
            g[s] = 0;
            for(int j =(s - 1) & s ; j != 0 ; j = (j - 1)& s) if(j&(lowbit(s))){
                  g[s] = (g[s] + (ll)g[s - j] * f[j] % mod) % mod;
            }
            f[s] = (mi[cnt[s]] - g[s] + mod) % mod;
            g[s] = (g[s] + f[s]) % mod;
      }

      d[0][0] = 1;
      for(int s = 1; s<(1<<n) ; s++){
          for(int k = 0; k<=K;k++){
                d[s][k] = 0;
                if(k == 0)  continue;
                for(int j = s ; j ; j=(j-1)&s)if(j&(lowbit(s))){
                     d[s][k] = (d[s][k] + (ll)d[s - j][k - 1] * f[j] % mod) % mod;
                }
          }
      }
      printf("Case #%d:\n",kase++);
      printf("%d\n",(d[(1<<n)-1][K] + mod) %mod);
   }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU 5713 & 2016"百度之星" 复赛(Astar Round3)1002 k个联通块

题意:众所周知,度度熊喜欢图,尤其是联通的图。 今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。思路:首先可以很容易想到状态...

HDU-5713-K个联通块 状压dp 计数技巧 去重技巧

题意 给一张无重边(可能有自环),求有多少种方案使得删除一些边后有KK个连通块。题解 删边等于添边。设dp[s][i]dp[s][i]表示状态为s的子集有k个连通块的方案数,则有dp[S0][...

HDU 5713 K个联通块 状压dp枚举子集 (2016百度之星复赛)

题意 众所周知,度度熊喜欢图,尤其是联通的图。 今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。  #inclu...

UvaLive-5713-Qin Shi Huang's National Road System

这个题在参考了某位牛人的博客后做出来的,地址:http://blog.csdn.net/hyogahyoga/article/details/8066812 第一次做这种对最小生成树建树的~主要的策...

UVA 5713 Qin Shi Huang's National Road System

题解: 类似最小生成树,先做最小生成树然后枚举顶点,删边和加边。 #include #include #include #include #include using namespace st...

例题5.20 秦始皇修路 LA5713

1.题目描述:点击打开链接 2.解题思路:本题利用次小生成树解决。根据题意,我们希望在O(1)时间内得知“在原图中删除边u-v后的最小生成树的权值”,这样,整个问题就可以在O(n^2)时间内解决。而...

【UVALive】5713 Qin Shi Huang's National Road System 最小生成树

传送门:

hdu1002大数相加

  • 2014-12-16 12:44
  • 877B
  • 下载

HDU 2000-2099 解题报告.CHM

  • 2013-08-08 20:51
  • 831KB
  • 下载

【2017多校】HDU6035 Colorful Tree 【听说是树形DP】

官方题解:单独考虑每一种颜色,答案就是对于每种颜色至少经过一次这种的路径条数之和。反过来思考只需要求有多少条路径没有经过这种颜色即可。直接做可以采用虚树的思想(不用真正建出来),对每种颜色的点按照 d...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)