关闭

Super Pow

62人阅读 评论(0) 收藏 举报
分类:

前提知识: ab % k = (a%k)(b%k)%k

对b做二分处理,即 (a^b) % k = (a * a)^(b/2) % k,这样时间复杂度就是logb了

当然还要处理b是奇数的情况,而且b在这道题里是个数组,所以要写一些针对数组的运算函数

class Solution {
public:
	int superPow(int a, vector<int>& b) {
		int ans = 1;
		a = a % 1337;
		while (morethanzero(b))
		{
			if (IsOdd(b))
				ans = (ans * a) % 1337;
			div(b, 2);
			a = (a * a) % 1337;
		}
		return ans;
	}

	void div(vector<int> &x, int y)
	{
		int tmp = 0;
		for (int i = 0; i < x.size(); i++)
		{
			x[i] += tmp * 10;
			tmp = x[i] % y;
			x[i] = x[i] / y;
		}
	}

	bool IsOdd(const vector<int> & nums)
	{
		if (nums.back() & 1)
			return true;
		else
			return false;
	}

	bool morethanzero(vector<int> & x) {
		for (int i = x.size() - 1; i >= 0; i--) {
			if (x[i] > 0) return true;
		}
		return false;
	}
};
然而还是超时了,囧,因为每次做除法的时候都要遍历一遍数组,所以时间复杂度实际上是nlogb

最后用了官方discuss里的一份代码,简单解释一下:

a^1234567 % k = (a^1234560 % k) * (a^7 % k) % k = (a^123456 % k)^10 % k * (a^7 % k) % k

写成函数的形式就是:f(a,1234567) = f(a, 1234560) * f(a, 7) % k = f(f(a, 123456),10) * f(a,7)%k

所以用迭代的方法进行计算

class Solution {
    const int base = 1337;
    int powmod(int a, int k) //a^k mod 1337 where 0 <= k <= 10
    {
        a %= base;
        int result = 1;
        for (int i = 0; i < k; ++i)
            result = (result * a) % base;
        return result;
    }
public:
    int superPow(int a, vector<int>& b) {
        if (b.empty()) return 1;
        int last_digit = b.back();
        b.pop_back();
        return powmod(superPow(a, b), 10) * powmod(a, last_digit) % base;
    }
};



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:16637次
    • 积分:1729
    • 等级:
    • 排名:千里之外
    • 原创:160篇
    • 转载:17篇
    • 译文:3篇
    • 评论:1条
    文章分类